Dbergen195 (Talk | contribs) |
Dbergen195 (Talk | contribs) |
||
Line 68: | Line 68: | ||
<div class="figure large"> | <div class="figure large"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--27-08-17-CL_structure.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--27-08-17-CL_structure.png"> | ||
− | <p class="figure subtitle"><b>Figure | + | <p class="figure subtitle"><b>Figure 3: Structure of CL.</b><br>Name: N<sup>ε</sup>-L-cysteinyl-L-lysine<br> |
Molecular Weight: 249.33 g mol<sup>-1</sup><br> | Molecular Weight: 249.33 g mol<sup>-1</sup><br> | ||
Storage: -20 – 4 °C<br> | Storage: -20 – 4 °C<br> | ||
</p> | </p> | ||
</div> | </div> | ||
+ | </div> | ||
<h3>N<sup>γ</sup> 2 cyanobenzothiazol-6-yl-L-asparagine</h3> | <h3>N<sup>γ</sup> 2 cyanobenzothiazol-6-yl-L-asparagine</h3> | ||
Line 85: | Line 86: | ||
<div class="figure large"> | <div class="figure large"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--27-08-17-CL_structure.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--27-08-17-CL_structure.png"> | ||
− | <p class="figure subtitle"><b>Figure | + | <p class="figure subtitle"><b>Figure 4: Structure of CBT-Asp.</b><br>Name: N<sup>γ</sup>-2-cyanobenzothiazol-6-yl-L-asparagine<br> |
Molecular Weight: 290.30 g mol<sup>-1</sup><br> | Molecular Weight: 290.30 g mol<sup>-1</sup><br> | ||
Storage: -20 – 4 °C<br> | Storage: -20 – 4 °C<br> | ||
Line 111: | Line 112: | ||
<div class="content"> | <div class="content"> | ||
− | <h3> | + | <h3>Silk Elastin like Proteins</h3> |
<!-- Normaler Text --> | <!-- Normaler Text --> | ||
<article> | <article> | ||
− | + | This specific binding can improve the stability of SELPs. These are linear polypeptides with repeats of silk and elastin consensus sequences. They show brought application and possibilities in medicine, tissue engineering and industry (Rnjak-Kovacina et al., 2011). The silk consensus sequence is GAGAGS and the elastin consensus sequence is VPAVG. The consensus sequences can interact with each other and are able to form non-covalent hydrogen bonds. This results in a polymer network based on hydrogen bonds with a β-sheet structure. Figure 5 shows the schematic structure of a SELP polymer network. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</article> | </article> | ||
<div class="figure large"> | <div class="figure large"> | ||
− | <img class="figure image" src="https://static.igem.org/mediawiki/2017/ | + | <img class="figure image" src="https://static.igem.org/mediawiki/2017/3/36/T--Bielefeld-CeBiTec--27-08-17-Schematic_SELP.png"> |
− | + | <p class="figure subtitle"><b>Figure 5: Schematic structure of a SELP polymer network.</b><br>Silk consensus sequences are shown in green, elastin consensus sequences are red and the blue lines show the hydrogen bonds of the consensus sequences.</p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <p class="figure subtitle"><b>Figure | + | |
</div> | </div> | ||
− | + | <article> | |
− | + | According to the work of Collins et al. (2013), we decided to use a sequence with nine repeats of five repeats of the silk consensus sequence and nine repeats of the elastin consensus sequence (see figure 6). | |
− | + | </article> | |
− | + | ||
− | + | <div class="figure large"> | |
− | + | <img class="figure image" src="https://static.igem.org/mediawiki/2017/0/0e/T--Bielefeld-CeBiTec--27-08-17-SELP_seq_Collins2013.png"> | |
− | </ | + | <p class="figure subtitle"><b>Figure 6: Schematic sequence of the SELP (Collins et al., 2013).</b><br>Silk consensus sequences are green and elastin consensus sequences are red.</p> |
</div> | </div> | ||
− | + | <article> | |
− | + | By incorporation of CL and CBT-Asp between the silk and the elastin repeats, we receive a strengthened polymer network with covalent bonds (Figure 7). | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</article> | </article> | ||
<div class="figure large"> | <div class="figure large"> | ||
− | <img class="figure image" src="https://static.igem.org/mediawiki/2017/ | + | <img class="figure image" src="https://static.igem.org/mediawiki/2017/9/9e/T--Bielefeld-CeBiTec--27-08-17-SELP_ncAA.png"> |
− | + | <p class="figure subtitle"><b>Figure 7: Schematic structure of a SELP polymer network.</b></p> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | <p class="figure subtitle"><b>Figure | + | |
</div> | </div> | ||
− | + | <h3>PRe-RDL</h3> | |
− | + | ||
− | + | ||
− | + | ||
− | + | <article> | |
− | + | The gene sequence for these SELPs has a high GC content and contains a high number of repeats leading to issues during synthesis. Therefore, Recursive Directional Ligation by Plasmid Reconstruction (PRe RDL) can be applied to address this challenge. Pre-RDL uses three restriction sites of a parent plasmid which contains the gene of interest (goi) and the subsequently ligation of fragments of two different restricted parent plasmids. The first step involves the restriction of a parent plasmid at the 3'-end of the goi and in the backbone. The second step is the restriction of a parent plasmid at the 5'-end of the goi and at the same position of the backbone as in the first step. The final step is the ligation of both generated fragments containing the goi. The result is a plasmid with two copies of the goi (Figure 5). We applied Pre-RDL to build a plasmid with the described SELP gene sequence. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</article> | </article> | ||
<div class="figure large"> | <div class="figure large"> | ||
− | <img class="figure image" src="https://static.igem.org/mediawiki/2017/ | + | <img class="figure image" src="https://static.igem.org/mediawiki/2017/5/59/T--Bielefeld-CeBiTec--27-08-17-PRe-RDL_McDaniel2010.png"> |
− | <p class="figure subtitle"><b> </b></p> | + | <p class="figure subtitle"><b>Figure 8: Scheme of the PRe-RDL (McDaniel et al., 2010).</b></p> |
</div> | </div> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<article> | <article> | ||
− | + | ||
<br> | <br> | ||
− | |||
<br> | <br> | ||
+ | Boateng, J., Matthews, K.H., Stevens, H.N.E., Eccleston, G.M., 2008. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 97. doi:10.1002/jps21210 | ||
+ | <br> | ||
+ | <br> | ||
+ | Collins, T., Azevedo-silva, J., Costa, A., Branca, F., Machado, R., Casal, M., 2013. Batch production of a silk-elastin-like protein in E . coli BL21 ( DE3 ): key parameters for optimisation. Microb. Cell Fact. 12, 1–16. doi:10.1186/1475-2859-12-21 | ||
+ | <br> | ||
+ | <br> | ||
+ | Liang, G., Ren, H., Rao, J., 2010. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60. doi:10.1038/nchem.480 | ||
+ | <br> | ||
+ | <br> | ||
+ | McDaniel, J.R., Mackay, J.A., Quiroz, F.G., Chilkoti, A., 2010. Recursive Directional Ligation by Plasmid Reconstruction allows Rapid and Seamless Cloning of Oligomeric Genes 11, 944–952. doi:10.1021/bm901387t.Recursive | ||
<br> | <br> | ||
<br> | <br> | ||
Nguyen, D.P., Elliott, T., Holt, M., Muir, T.W., Chin, J.W., 2011. Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J. Am. Chem. Soc. 133, 11418–11421. doi:10.1021/ja203111c | Nguyen, D.P., Elliott, T., Holt, M., Muir, T.W., Chin, J.W., 2011. Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J. Am. Chem. Soc. 133, 11418–11421. doi:10.1021/ja203111c | ||
+ | <br> | ||
+ | <br> | ||
+ | Rnjak-Kovacina, J., Daamen, W.F., Pierna, M., Rodríguez-Cabello, J.C., Weiss, A.S., 2011. Elastin Biopolymers. Compr. Biomater. 329–346. doi:http://dx.doi.org/10.1016/B978-0-08-055294-1.00071-4 | ||
+ | |||
</article> | </article> | ||
Revision as of 03:49, 27 August 2017
Fusing
Short summary
As proof of concept, we work on enhanced stability of a protein polymer. This networks can be applied for different applications like modern biomaterials in medicine and industry (Rnjak-Kovacina et al., 2011). The amino acids Nε-L-cysteinyl-L-lysine (CL) and Nγ 2 cyanobenzothiazol 6 yl L asparagine (CBT-Asp) comprise key parts of this tool. Both amino acids can bind specificly to each other resulting in the formation of a covalent bond between their side chains. We plan to use this covalent bond to increase the stability of silk elastin like proteins (SELPs). The strengthened polymer network would be a perfect material to produce biological wound bindings which are very thin and they would be able to interact with the natural tissue matrix (Boateng et al., 2008).
Terminus independent fusion proteins
Figure 1: Reaction of the 1,2-aminothiol of cysteine and CBT to luciferin (Liang et al., 2010).
Figure 2: Specific binding reaction of CL and CBT-Asp.
Nε-L-cysteinyl-L-lysine
Figure 3: Structure of CL.
Name: Nε-L-cysteinyl-L-lysine
Molecular Weight: 249.33 g mol-1
Storage: -20 – 4 °C
Nγ 2 cyanobenzothiazol-6-yl-L-asparagine
Figure 4: Structure of CBT-Asp.
Name: Nγ-2-cyanobenzothiazol-6-yl-L-asparagine
Molecular Weight: 290.30 g mol-1
Storage: -20 – 4 °C
Silk Elastin like Proteins
Figure 5: Schematic structure of a SELP polymer network.
Silk consensus sequences are shown in green, elastin consensus sequences are red and the blue lines show the hydrogen bonds of the consensus sequences.
Figure 6: Schematic sequence of the SELP (Collins et al., 2013).
Silk consensus sequences are green and elastin consensus sequences are red.
Figure 7: Schematic structure of a SELP polymer network.
PRe-RDL
Figure 8: Scheme of the PRe-RDL (McDaniel et al., 2010).
Boateng, J., Matthews, K.H., Stevens, H.N.E., Eccleston, G.M., 2008. Wound Healing Dressings and Drug Delivery Systems: A Review. J. Pharm. Sci. 97. doi:10.1002/jps21210
Collins, T., Azevedo-silva, J., Costa, A., Branca, F., Machado, R., Casal, M., 2013. Batch production of a silk-elastin-like protein in E . coli BL21 ( DE3 ): key parameters for optimisation. Microb. Cell Fact. 12, 1–16. doi:10.1186/1475-2859-12-21
Liang, G., Ren, H., Rao, J., 2010. A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2, 54–60. doi:10.1038/nchem.480
McDaniel, J.R., Mackay, J.A., Quiroz, F.G., Chilkoti, A., 2010. Recursive Directional Ligation by Plasmid Reconstruction allows Rapid and Seamless Cloning of Oligomeric Genes 11, 944–952. doi:10.1021/bm901387t.Recursive
Nguyen, D.P., Elliott, T., Holt, M., Muir, T.W., Chin, J.W., 2011. Genetically Encoded 1,2-Aminothiols Facilitate Rapid and Site-Specific Protein Labeling via a Bio-orthogonal Cyanobenzothiazole Condensation. J. Am. Chem. Soc. 133, 11418–11421. doi:10.1021/ja203111c
Rnjak-Kovacina, J., Daamen, W.F., Pierna, M., Rodríguez-Cabello, J.C., Weiss, A.S., 2011. Elastin Biopolymers. Compr. Biomater. 329–346. doi:http://dx.doi.org/10.1016/B978-0-08-055294-1.00071-4