Line 124: | Line 124: | ||
<!-- Footer --> | <!-- Footer --> | ||
<footer> | <footer> | ||
+ | <div id="page-top" data-spy="scroll" data-target=".navbar-fixed-top"> | ||
+ | <!-- One-Page Scroll NavBar --> | ||
+ | <nav class="navbar scrollnav-custom navbar-fixed-bottom" role="navigation" id="scrollnav"> | ||
<div class="container"> | <div class="container"> | ||
− | <div class=" | + | <div class="navbar-header"> |
− | < | + | <button type="button" class="navbar-toggle" data-toggle="collapse" data-target=".navbar-main-collapse"> |
− | <ul class=" | + | Menu <i class="fa fa-bars"></i> |
− | <li> | + | </button> |
− | <a class="page-scroll" href=" | + | <a class="page-scroll" href="#">Top</a> |
+ | </div> | ||
+ | |||
+ | <!-- Collect the nav links, forms, and other content for toggling --> | ||
+ | <div class="collapse navbar-collapse navbar-right navbar-main-collapse"> | ||
+ | <ul class="nav navbar-nav"> | ||
+ | <!-- Hidden li included to remove active class from about link when scrolled up past about section --> | ||
+ | <li> | ||
+ | <a class="page-scroll" href="https://2017.igem.org/Team:UCopenhagen">Previous</a> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a class="page-scroll" href="https://2017.igem.org/Team:UCopenhagen/Project">Next</a> | ||
</li> | </li> | ||
− | + | </ul> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
+ | <!-- /.navbar-collapse --> | ||
</div> | </div> | ||
+ | <!-- /.container --> | ||
+ | </nav> | ||
+ | </div> | ||
</footer> | </footer> | ||
Revision as of 10:20, 14 September 2017
<!DOCTYPE HTML>
Incell: a platform for synthetic endosymbiosis
Incell is a new synthetic biology platform with near future applications in research, industry and services. We are rewriting nature’s code for endosymbiosis and transforming an evolutionary phenomenon into a technology compatible with standard biological parts.
Our vision is to produce synthetic host–endosymbiont systems. We set out with a trinity of experiments intrinsic to the synthetic reconstruction of endosymbiosis. First, creating and sustaining dependence between a host and its endosymbionts by fulfilling the amino acid requirement of an auxotrophic host. Next, to build a modular system of cell-penetrating peptides for protein transport of host nuclear encoded proteins into an endosymbiont, recapitulating a crucial feature of the natural process. Finally, regulating the number of endosymbionts within a host using a CRISPR-Cas system for control of replication.
Further ahead we see a safe, customisable, sustainable technology providing biological solutions to present and future challenges in biotechnology, agriculture and medicine.