Line 153: | Line 153: | ||
</nav> | </nav> | ||
</div> | </div> | ||
+ | |||
+ | <footer> | ||
+ | <div class="container text-center content-section sponsor-section"> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-2"><a href="https://2017.igem.org/Team:BOKU-Vienna/Sponsors"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/e/e9/T--BOKU-Vienna--std_boku.png" alt="BOKU"> | ||
+ | </div> | ||
+ | <div class="col-md-2"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/e/e7/T--BOKU-Vienna--std_polymun.png" alt="Polymun" > | ||
+ | </div> | ||
+ | <div class="col-md-2"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/f/f5/T--BOKU-Vienna--std_vogelbusch.png" alt="Vogelbusch"> | ||
+ | </div> | ||
+ | <div class="col-md-2"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/c/c5/T--BOKU-Vienna--std_IDT.png" alt="IDT"> | ||
+ | </div> | ||
+ | <div class="col-md-2"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/a/af/T--BOKU-Vienna--std_biomay.png" alt="Biomay"> | ||
+ | </div> | ||
+ | <div class="col-md-2"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/c/c1/T--BOKU-Vienna--std_snap_gene.png" alt="SnapGene""></a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | </footer> | ||
+ | |||
<!-- jQuery --> | <!-- jQuery --> |
Revision as of 15:33, 20 September 2017
<!DOCTYPE HTML>
Incell: a platform for synthetic endosymbiosis
Incell is a new synthetic biology platform with near future applications in research, industry and services. We are rewriting nature’s code for endosymbiosis and transforming an evolutionary phenomenon into a technology compatible with standard biological parts.
Our vision is to produce synthetic host–endosymbiont systems. We set out with a trinity of experiments intrinsic to the synthetic reconstruction of endosymbiosis. First, creating and sustaining dependence between a host and its endosymbionts by fulfilling the amino acid requirement of an auxotrophic host. Next, to build a modular system of cell-penetrating peptides for protein transport of host nuclear encoded proteins into an endosymbiont, recapitulating a crucial feature of the natural process. Finally, regulating the number of endosymbionts within a host using a CRISPR-Cas system for control of replication.
Further ahead we see a safe, customisable, sustainable technology providing biological solutions to present and future challenges in biotechnology, agriculture and medicine.