Difference between revisions of "Team:UCopenhagen/Interdependency"

Line 32: Line 32:
  
  
<div class="content-section-a">
+
<div class="content-section-a" id="top">
 
<div class="container">
 
<div class="container">
 
             <div class="row">
 
             <div class="row">
Line 39: Line 39:
 
                     <div class="clearfix"></div>
 
                     <div class="clearfix"></div>
 
                     <h2 class="section-heading">Introduction </h2>
 
                     <h2 class="section-heading">Introduction </h2>
                     <p class="lead">Our team believes that establishing a stable platform for scientists to create naïve orthogonal living compartments, would allow for an unpredictable advancement in the field of synthetic biology. Our project will not attempt to create an endosymbiont, but instead investigate the mechanisms in free-living cells in a bottom-up approach to endosymbiosis. 
+
                     <p class="lead" Something about the importance of Interdependency in Nature: How it would be necessary for the final product. </p>
The endosymbiotic theory, formulated in the early years of the previous century, outlines that the organelles of the eukaryotic cell, such as the mitochondria, have their origin in free-living prokaryotes engulfed by bigger cells. These incorporated cells then co-evolved with their host conferring to it novel emergent properties which ultimately helped fuel the development of more complex multicellular biological systems such as plants and animals (Archibald, 2015). </p>
+
                </div>
 +
                <div class="col-lg-5 col-lg-offset-2 col-sm-6">
 +
                    <img class="img-responsive" src="img/national-logo.jpg" alt="">
 +
                </div>
 +
            </div>
  
 +
        </div>
 +
        <!-- /.container -->
 +
 +
    </div>
 +
</div>
 +
       
 +
    <div class="content-section-b" id="design">
 +
        <div class="container">
 +
            <div class="row">
 +
                <div class="col-lg-5 col-lg-offset-1 col-sm-push-6  col-sm-6">
 +
                    <hr class="section-heading-spacer">
 +
                    <div class="clearfix"></div>
 +
                    <h2 class="section-heading">Design</h2>
 +
                    <<p> Final design, with aims and genes
 
<br>
 
<br>
 +
<p> We look at aroG, trpE and yddG
 +
</p>
 +
                     
 +
                    </div>
  
<p>We have identified three mechanisms we believe to be mandatory for the development of a stable endosymbiotic relationship, which we will be trying to replicate in free-living cells. First of all, in order for the relationship to be stable, the two organisms must  be mutually dependent on each other; there must be a mutually beneficial interaction between host and symbiont. Secondly, there has to be some sort of control and synchronization of symbiont replication. If the symbiont were to be replicating freely we could end up with way too many or not enough symbionts in the host.  Finally, a common feature of the endosymbiotic organelles we have looked at, is the transfer of genes from the symbiont to the host. Because of this transfer, the gene and protein expression is taking place in the nucleus and the proteins and metabolites are transported to the organelle. This import of proteins is interesting not just for understanding endosymbiosis, but also for the potential applications in synthetic biology.</p>
 
  
 +
<div class="content-section-a" id="experiment">
 +
<div class="container">
 +
            <div class="row">
 +
                <div class="col-lg-5 col-sm-6">
 +
                    <hr class="section-heading-spacer">
 +
                    <div class="clearfix"></div>
 +
                    <h2 class="section-heading">Experiments</h2>
 +
                    <p class="lead"> What experiments we make, should be listed here.
 
<br>
 
<br>
 
+
<p> Flowchart you can press on to go to that experiment?
<p>Based on these considerations, we decided to work on three distinct, but intertwined, projects pertaining to endosymbiosis, namely Interdependence, Number Control, and Protein import. We believe that by combining these three projects, a key step towards the understanding of endosymbiosis and its employment in synthetic biology will be obtained. </p>
+
</p>
 +
       
 
                 </div>
 
                 </div>
 
                 <div class="col-lg-5 col-lg-offset-2 col-sm-6">
 
                 <div class="col-lg-5 col-lg-offset-2 col-sm-6">
Line 61: Line 91:
 
</div>
 
</div>
 
          
 
          
     <div class="content-section-b">
+
     <div class="content-section-b" id="process">
 
         <div class="container">
 
         <div class="container">
 
             <div class="row">
 
             <div class="row">
Line 67: Line 97:
 
                     <hr class="section-heading-spacer">
 
                     <hr class="section-heading-spacer">
 
                     <div class="clearfix"></div>
 
                     <div class="clearfix"></div>
                     <h2 class="section-heading">Applications and Implications</h2>
+
                     <h2 class="section-heading">Design process</h2>
                     <<p>By understanding the basic principles behind the creation of stable endosymbiotic events we hope that in the future it will be possible to use artificial endosymbiosis as a new technology in synthetic biology, and we believe that value can be created in the foundational track of the iGEM competition. History has shown that great scientific advances has followed the implementation of new revolutionary technologies (Gershon 2003). </p>
+
                     <<p> Inspiration to the design, and thoughts/considerations
 
<br>
 
<br>
<p>We envision that artificial endosymbiosis could be applied in a broad range of fields, including agriculture, medicine and production of valuable compounds. A deeper understanding of the relationships intertwining endosymbionts and their hosts could unravel new knowledge applicable for the treatment of mitochondrial diseases, while a living compartment able to fixate nitrogen from the air could decrease the fertilizer use in agricultural production. </p>
+
<p> All iterations of the design...  
<br>
+
</p>
<p>However, the applications are only limited by the imagination of future users. Indeed, the game-changing role of endosymbiosis has not gone unseen to the eyes of the modern bioengineers, who predict that the establishment of a novel interaction has the potential to radically alter the host cell physiology without directly affecting the host genome (Scientific America Vol 105 pp. 36-45).</p>
+
<br>
+
<p>Before the potential application of artificial endosymbiosis, there are many things to consider. While the current regulations regarding GMO limits what is possible to apply in agriculture and medicine, regulations regarding synthetically modified organisms (SMOs) have not yet been systematically put into place. How will a new field of SMO be regulated, and how will it influence possible applications of artificial endosymbiosis?</p>
+
<br>
+
<p>In addition to our scientific investigation we are enthused to trigger debate about synthetic biology. We intend to podcast intriguing conversations with experts, thereby hoping to reach the general public and impel the discussion about the ethics and future prospects in combining biology and engineering.</p>
+
 
                        
 
                        
 
                     </div>
 
                     </div>
 +
 
                     <div class="col-lg-6 col-sm-pull-6  col-sm-6">
 
                     <div class="col-lg-6 col-sm-pull-6  col-sm-6">
 
                      
 
                      
Line 127: Line 153:
 
                     <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
 
                     <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
 
                     <li>
 
                     <li>
                 <a class="page-scroll" href="#">Top</a>
+
                 <a class="page-scroll" href="#Top">Introduction</a>
</li>
+
                    </li>
 +
                    <li>
 +
                <a class="page-scroll" href="#Design">Final design</a>
 +
                    </li>
 +
                    <li>
 +
                <a class="page-scroll" href="#experiment">Experiments</a>
 +
                    </li>
 +
                    <li>
 +
                <a class="page-scroll" href="#process">Design Process</a>
 +
                    </li>
 +
 
 
                 </ul>
 
                 </ul>
 
             </div>
 
             </div>

Revision as of 14:43, 3 October 2017

I N T E R D E P E N D E N C Y


Introduction


Design

<

Final design, with aims and genes

We look at aroG, trpE and yddG


Experiments

What experiments we make, should be listed here.

Flowchart you can press on to go to that experiment?


Design process

<

Inspiration to the design, and thoughts/considerations

All iterations of the design...