Line 17: | Line 17: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2> Short | + | <h2> Short Summary </h2> |
<article> | <article> | ||
To showcase the possibility of enzyme activity regulation on protein level, we designed a <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> experiment in which we controlled the lycopene production of an <i>E. coli</i> strain. This was achieved by incorporation of the non-canonical amino acid (ncAA) phenylalanine-4'-azobenzene (AzoF) into pytoene desaturase, encoded by <i>crtI</i>. The lycopene production can be completely terminated by introduction of amber codons into <i>crtI</i>. The enzyme activity can be partially recovered by cotransformation with an aminoacyl-tRNA synthetase (aaRS, <a href="http://parts.igem.org/Part:BBa_K2201207">BBa_K2201207</a>). Even without supplementation of the media with the desired ncAA, this will lead to some enzyme activity recovery. We also showed that we are able to switch the conformation of AzoF from a mixed state to <i>trans</i> and <i>cis</i> with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a> and that the amino acids are stable in their specific conformation over several hours. When cultivated with AzoF in <i>cis</i>- or <i>trans</i>-conformation we detected a significant difference in the lycopene production. Therefore, we proved that <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> of enzyme activity on protein level can be achieved using our system. | To showcase the possibility of enzyme activity regulation on protein level, we designed a <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> experiment in which we controlled the lycopene production of an <i>E. coli</i> strain. This was achieved by incorporation of the non-canonical amino acid (ncAA) phenylalanine-4'-azobenzene (AzoF) into pytoene desaturase, encoded by <i>crtI</i>. The lycopene production can be completely terminated by introduction of amber codons into <i>crtI</i>. The enzyme activity can be partially recovered by cotransformation with an aminoacyl-tRNA synthetase (aaRS, <a href="http://parts.igem.org/Part:BBa_K2201207">BBa_K2201207</a>). Even without supplementation of the media with the desired ncAA, this will lead to some enzyme activity recovery. We also showed that we are able to switch the conformation of AzoF from a mixed state to <i>trans</i> and <i>cis</i> with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a> and that the amino acids are stable in their specific conformation over several hours. When cultivated with AzoF in <i>cis</i>- or <i>trans</i>-conformation we detected a significant difference in the lycopene production. Therefore, we proved that <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> of enzyme activity on protein level can be achieved using our system. | ||
Line 28: | Line 28: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2> Design of AzoF-RS </h2> | + | <h2> Design of the AzoF-RS </h2> |
<article> | <article> | ||
The AzoF-RS (<b><a href="http://parts.igem.org/Part:BBa_K2201207">BBa_K2201207</a></b>) was based on an part exchange with <a href="https://2017.igem.org/Team:CU-Boulder">CU Boulder 2017</a>. They got it from the Schultz lab, which performed a selection experiment on the <i>M. jannaschii</i> TyrRS to evolve a new aaRS capable of incorporating the photoisomerizable phenylalanine-4‘-azobenzene (AzoF). Figure 1 shows a sequence alignment of the protein sequences of the <i>M. jannaschii</i> TyrRS and the AzoF-RS after the selection process. | The AzoF-RS (<b><a href="http://parts.igem.org/Part:BBa_K2201207">BBa_K2201207</a></b>) was based on an part exchange with <a href="https://2017.igem.org/Team:CU-Boulder">CU Boulder 2017</a>. They got it from the Schultz lab, which performed a selection experiment on the <i>M. jannaschii</i> TyrRS to evolve a new aaRS capable of incorporating the photoisomerizable phenylalanine-4‘-azobenzene (AzoF). Figure 1 shows a sequence alignment of the protein sequences of the <i>M. jannaschii</i> TyrRS and the AzoF-RS after the selection process. | ||
Line 43: | Line 43: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2> Two Amber- | + | <h2> Two Amber-<i>crtI</i>-Variants </h2> |
<article> | <article> | ||
We created two variants in which the <i>crtI</i> gene in the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> has an amber-codon incorporated; one at the position 318 and the other at position 353. We cultivated <i>E.coli</i> BL21(DE3) transformed with the two amber-variants and a functional CrtI for 24 hours at 37°C and centrifuged the culture. The pellet of the strain with the functional CrtI showed a visible orange color, typical for lycopene (Figure 2). The two amber-variants showed no color due to the absence of lycopene caused by the non-functional CrtI in the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a>. | We created two variants in which the <i>crtI</i> gene in the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> has an amber-codon incorporated; one at the position 318 and the other at position 353. We cultivated <i>E.coli</i> BL21(DE3) transformed with the two amber-variants and a functional CrtI for 24 hours at 37°C and centrifuged the culture. The pellet of the strain with the functional CrtI showed a visible orange color, typical for lycopene (Figure 2). The two amber-variants showed no color due to the absence of lycopene caused by the non-functional CrtI in the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a>. | ||
Line 72: | Line 72: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2> Basic | + | <h2> Basic Lycopene Production of the Cotransformants </h2> |
<article> | <article> | ||
The cotransformants, now containing the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> with one of the three <i>crtI</i> variants and the AzoF-RS, were cultivated in a 6-wellplate in LB-media at 37°C and 400 rpm. To measure the basic lycopene production when native amino acids are unspecifically incorporated at the amber-codons, no AzoF was added to the media. After 16 hours of cultivation, 15 mL of the culture were harvested and the lycopene extracted with acetone (<a href="https://static.igem.org/mediawiki/2017/8/8c/T--Bielefeld-CeBiTec--YKE_lycopene_protocol.pdf">lycopene extraction protocol</a>). | The cotransformants, now containing the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> with one of the three <i>crtI</i> variants and the AzoF-RS, were cultivated in a 6-wellplate in LB-media at 37°C and 400 rpm. To measure the basic lycopene production when native amino acids are unspecifically incorporated at the amber-codons, no AzoF was added to the media. After 16 hours of cultivation, 15 mL of the culture were harvested and the lycopene extracted with acetone (<a href="https://static.igem.org/mediawiki/2017/8/8c/T--Bielefeld-CeBiTec--YKE_lycopene_protocol.pdf">lycopene extraction protocol</a>). | ||
Line 97: | Line 97: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2>Irradiation, | + | <h2>Irradiation, Switching and Stability of AzoF</h2> |
<article> | <article> | ||
To make sure that we are able to switch the conformation of AzoF and that the <i>cis</i> and <i>trans</i> conformations are stable over the cultivation time, we irradiated a sample of LB-media containing 1 mM of AzoF with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. One sample was irradiated with 367 nm for 40 minutes with 100% brightness which causes AzoF to go over to its <i>cis</i>-conformation. The conformation of AzoF can be detected through its absorption spectrum (Figure 7). | To make sure that we are able to switch the conformation of AzoF and that the <i>cis</i> and <i>trans</i> conformations are stable over the cultivation time, we irradiated a sample of LB-media containing 1 mM of AzoF with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. One sample was irradiated with 367 nm for 40 minutes with 100% brightness which causes AzoF to go over to its <i>cis</i>-conformation. The conformation of AzoF can be detected through its absorption spectrum (Figure 7). | ||
Line 115: | Line 115: | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
<div class="content"> | <div class="content"> | ||
− | <h2>Influence of | + | <h2>Influence of Photoswitching on the Lycopene Production</h2> |
<article> | <article> | ||
To investigate the influence of <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> on the lycopene production, we cultivated three biological replicates of the three variants and each with one of the AzoF conformations for 24 hours in a 6-wellplate at 37°C and 400 rpm. The media was supplemented with 1 mM of AzoF and then split in to charges. Both were irradiated for 40 minutes and 100 % brightness, one with 367 nm and the other with 465 nm to photoswitch the amino acids. After the cultivation, we measured the OD600 of each sample (Figure 8). The growth was not influenced in a noticeable way by the different AzoF variants, since the error bars overlap each other. | To investigate the influence of <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> on the lycopene production, we cultivated three biological replicates of the three variants and each with one of the AzoF conformations for 24 hours in a 6-wellplate at 37°C and 400 rpm. The media was supplemented with 1 mM of AzoF and then split in to charges. Both were irradiated for 40 minutes and 100 % brightness, one with 367 nm and the other with 465 nm to photoswitch the amino acids. After the cultivation, we measured the OD600 of each sample (Figure 8). The growth was not influenced in a noticeable way by the different AzoF variants, since the error bars overlap each other. |
Revision as of 21:04, 29 October 2017
Short Summary
Design of the AzoF-RS
Figure 1: Sequence alignment of the M. jannaschii TyrRS and the AzoF-RS of the Schultz lab. The alignment shows six differences in the protein sequences.
Two Amber-crtI-Variants
Figure 2: Cell pellets of the functional CrtI-variant (left), the amber318 (middle) and the amber353 (right) variants vortexed in 400 µL acetone.
Figure 3: Absorbance spectrum of the positive lycopene sample from 400 to 550 nm normalized with the measurement of a 1:1 acetone water sample.
Figure 4: Absorbance at 476 nm of the samples with extracted lycopene of the transformants with the functional crtI (left), the crtI with an amber codon at position 318 (middle) and with an amber codon at position 353 (right). The absorbance at 476 nm of a 1:1 aceton water solution was subtracted from the samples.
Basic Lycopene Production of the Cotransformants
Figure 5: Absorption spectrum of the extracted lycopene of the three samples. LP is the lycopene producing strain with an intact crtI, TAG318 has the amber-codon at position 318 in crtI, TAG353 has an amber-codon at position 353 in crtI.
Figure 6: Mean and standard deviation of the absorption spectrum of the three samples from 400 to 550 nm.
Irradiation, Switching and Stability of AzoF
Figure 7: Absorption spectrum of AzoF in LB media after irradiation with light of 367 nm wavelength. The black line shows the typical absorption of AzoF in the trans-conformation while the other lines show the absorption spectrum in the cis-conformation. The spectrum was measured directly after the irradiation, then after 2, 4, 17 and 20 hours. The sample was incubated at 30°C.
Influence of Photoswitching on the Lycopene Production
Figure 8: OD600 of three biological and three technical replicated of the crtI variants after cultivation.
Figure 9: Absorption spectrum of the four samples of the crtI variants, cultivated with AzoF supplemented to the media photoswitched to cis- or trans-conformation.
Figure 10: Absorption at 476 nm (indicator for lycopene) normalized to the OD600 (indication for the cell density) to calculate the relative lycopene production of each crtI variant cultivated with AzoF in cis- and trans-conformation.