Line 56: | Line 56: | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/f/fe/T--Bielefeld-CeBiTec--YKE_lycopene_spectrum.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/f/fe/T--Bielefeld-CeBiTec--YKE_lycopene_spectrum.png"> | ||
− | <p class="figure subtitle"><b>Figure 3:</b> Absorbance spectrum of the positive lycopene sample from 400 to 550 nm normalized with the measurement of a 1:1 acetone water sample.<p> | + | <p class="figure subtitle"><b>Figure 3:</b> Absorbance spectrum of the positive lycopene sample from 400 to 550 nm normalized with the measurement of a 1:1 acetone water sample.<p> |
</div> | </div> | ||
<article> | <article> | ||
− | Figure 3 shows that the absorbance maximum of the lycopene lays at 476 nm, which correlates with the data of the references (Chemat-Djenni <i>et al.</i>, 2013). We then performed the quantification of the lycopene production with one biological and three technical replicates (Figure 4). It verifies the implications of Figure 2 that the cells containing the amber-variants are not able to produce lycopene. That makes them suitable for the incorporation process of AzoF, such that an increase of the lycopene production is to be expected after cotransformation with the AzoF-RS and feeding with AzoF. | + | Figure 3 shows that the absorbance maximum of the lycopene lays at 476 nm, which correlates with the data of the references (Chemat-Djenni <i>et al.</i>, 2013). We then performed the quantification of the lycopene production with one biological and three technical replicates (Figure 4). It verifies the implications of Figure 2 that the cells containing the amber-variants are not able to produce lycopene. That makes them suitable for the incorporation process of AzoF, such that an increase of the lycopene production is to be expected after cotransformation with the AzoF-RS and feeding with AzoF. |
</article> | </article> | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/2/2f/T--Bielefeld-CeBiTec--YKE_Lycopene_vergleich.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/2/2f/T--Bielefeld-CeBiTec--YKE_Lycopene_vergleich.png"> | ||
− | <p class="figure subtitle"><b>Figure 4:</b> Absorbance at 476 nm of the samples with extracted lycopene of the transformants with the functional crtI (left), the crtI with an amber codon at position 318 (middle) and with an amber codon at position 353 (right). The absorbance at 476 nm of a 1:1 aceton water solution was subtracted from the samples.<p> | + | <p class="figure subtitle"><b>Figure 4:</b> Absorbance at 476 nm of the samples with extracted lycopene of the transformants with the functional crtI (left), the crtI with an amber codon at position 318 (middle) and with an amber codon at position 353 (right). The absorbance at 476 nm of a 1:1 aceton water solution was subtracted from the samples.<p> |
</div> | </div> | ||
</div> | </div> | ||
Line 74: | Line 74: | ||
<h2> Basic Lycopene Production of the Cotransformants </h2> | <h2> Basic Lycopene Production of the Cotransformants </h2> | ||
<article> | <article> | ||
− | The cotransformants, now containing the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> with one of the three <i>crtI</i> variants and the AzoF-RS, were cultivated in a 6-wellplate in LB-media at | + | The cotransformants, now containing the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">lycopene pathway</a> with one of the three <i>crtI</i> variants and the AzoF-RS, were cultivated in a 6-wellplate in LB-media at 37 °C and 400 rpm. To measure the basic lycopene production when native amino acids are unspecifically incorporated at the amber-codons, no AzoF was added to the media. After 16 hours of cultivation, 15 mL of the culture were harvested and the lycopene extracted with acetone (<a href="https://static.igem.org/mediawiki/2017/8/8c/T--Bielefeld-CeBiTec--YKE_lycopene_protocol.pdf">lycopene extraction protocol</a>). |
</article> | </article> | ||
<div class="figure small"> | <div class="figure small"> | ||
Line 85: | Line 85: | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/a/aa/T--Bielefeld-CeBiTec--YKE_lycopene4.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/a/aa/T--Bielefeld-CeBiTec--YKE_lycopene4.png"> | ||
− | <p class="figure subtitle"><b>Figure 6: </b>Mean and standard deviation of the absorption spectrum of the three samples from 400 to 550 nm.<p> | + | <p class="figure subtitle"><b>Figure 6: </b>Mean and standard deviation of the absorption spectrum of the three samples from 400 to 550 nm.<p> |
</div> | </div> | ||
<article> | <article> | ||
Line 99: | Line 99: | ||
<h2>Irradiation, Switching and Stability of AzoF</h2> | <h2>Irradiation, Switching and Stability of AzoF</h2> | ||
<article> | <article> | ||
− | To make sure that we are able to switch the conformation of AzoF and that the <i>cis</i> and <i>trans</i> conformations are stable over the cultivation time, we irradiated a sample of LB-media containing 1 mM of AzoF with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. One sample was irradiated with 367 nm for 40 minutes with 100% brightness which causes AzoF to go over to its <i>cis</i>-conformation. The conformation of AzoF can be detected through its absorption spectrum (Figure 7). | + | To make sure that we are able to switch the conformation of AzoF and that the <i>cis</i> and <i>trans</i> conformations are stable over the cultivation time, we irradiated a sample of LB-media containing 1 mM of AzoF with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. One sample was irradiated with 367 nm for 40 minutes with 100 % brightness which causes AzoF to go over to its <i>cis</i>-conformation. The conformation of AzoF can be detected through its absorption spectrum (Figure 7). |
</article> | </article> | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f8/T--Bielefeld-CeBiTec--YKE_lycopene6.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f8/T--Bielefeld-CeBiTec--YKE_lycopene6.png"> | ||
− | <p class="figure subtitle"><b>Figure 7:</b> Absorption spectrum of AzoF in LB media after irradiation with light of 367 nm wavelength. The black line shows the typical absorption of AzoF in the <i>trans</i>-conformation while the other lines show the absorption spectrum in the <i>cis</i>-conformation. The spectrum was measured directly after the irradiation, then after 2, 4, 17 and 20 hours. The sample was incubated at 30°C.<p> | + | <p class="figure subtitle"><b>Figure 7:</b> Absorption spectrum of AzoF in LB media after irradiation with light of 367 nm wavelength. The black line shows the typical absorption of AzoF in the <i>trans</i>-conformation while the other lines show the absorption spectrum in the <i>cis</i>-conformation. The spectrum was measured directly after the irradiation, then after 2, 4, 17 and 20 hours. The sample was incubated at 30°C.<p> |
</div> | </div> | ||
<article> | <article> | ||
− | Figure 7 shows that we were able to switch the conformation of AzoF in LB-media with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. Furthermore, the less stable <i>cis</i>-conformation, which is induced by the UV-light of 367 nm, was stable for over 20 hours at cultivation conditions. This led us to the conclusion that we could start a cultivation of the three <i>crtI</i> variants with the two different AzoF conformations and that any detectable difference in the lycopene production would be caused by the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> event of the amino acids. | + | Figure 7 shows that we were able to switch the conformation of AzoF in LB-media with our <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Hardware">LED panel</a>. Furthermore, the less stable <i>cis</i>-conformation, which is induced by the UV-light of 367 nm, was stable for over 20 hours at cultivation conditions. This led us to the conclusion that we could start a cultivation of the three <i>crtI</i> variants with the two different AzoF conformations and that any detectable difference in the lycopene production would be caused by the <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> event of the amino acids. |
</article> | </article> | ||
</div> | </div> | ||
Line 117: | Line 117: | ||
<h2>Influence of Photoswitching on the Lycopene Production</h2> | <h2>Influence of Photoswitching on the Lycopene Production</h2> | ||
<article> | <article> | ||
− | To investigate the influence of <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> on the lycopene production, we cultivated three biological replicates of the three variants and each with one of the AzoF conformations for 24 hours in a 6-wellplate at | + | To investigate the influence of <a href="https://2017.igem.org/Team:Bielefeld-CeBiTec/Project/toolbox/photoswitching">photoswitching</a> on the lycopene production, we cultivated three biological replicates of the three variants and each with one of the AzoF conformations for 24 hours in a 6-wellplate at 37 °C and 400 rpm. The media was supplemented with 1 mM of AzoF and then split in to charges. Both were irradiated for 40 minutes and 100 % brightness, one with 367 nm and the other with 465 nm to photoswitch the amino acids. After the cultivation, we measured the OD<sub>600</sub> of each sample (Figure 8). The growth was not influenced in a noticeable way by the different AzoF variants, since the error bars overlap each other. |
</article> | </article> | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f0/T--Bielefeld-CeBiTec--YKE_OD_after_irradiation.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f0/T--Bielefeld-CeBiTec--YKE_OD_after_irradiation.png"> | ||
− | <p class="figure subtitle"><b>Figure 8:</b> | + | <p class="figure subtitle"><b>Figure 8:</b> OD<sub>600</sub> of three biological and three technical replicated of the <i>crtI</i> variants after cultivation.<p> |
</div> | </div> | ||
<article> | <article> | ||
Line 131: | Line 131: | ||
</div> | </div> | ||
<article> | <article> | ||
− | The absorption at 476 nm was measured and normed to the | + | The absorption at 476 nm was measured and normed to the OD<sub>600</sub> of the samples. The relative lycopene production of each <i>crtI</i> and AzoF variant is shown in Figure 10 compared to the unmodified lycopene producer. |
</article> | </article> | ||
<div class="figure small"> | <div class="figure small"> | ||
<img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f0/T--Bielefeld-CeBiTec--YKE_switch_proof.png"> | <img class="figure image" src="https://static.igem.org/mediawiki/2017/f/f0/T--Bielefeld-CeBiTec--YKE_switch_proof.png"> | ||
− | <p class="figure subtitle"><b>Figure 10:</b> Absorption at 476 nm (indicator for lycopene) normalized to the | + | <p class="figure subtitle"><b>Figure 10:</b> Absorption at 476 nm (indicator for lycopene) normalized to the OD<sub>600</sub> (indication for the cell density) to calculate the relative lycopene production of each <i>crtI</i> variant cultivated with AzoF in <i>cis</i>- and <i>trans</i>-conformation. |
</div> | </div> | ||
<article> | <article> |
Revision as of 21:07, 29 October 2017
Short Summary
Design of the AzoF-RS
Figure 1: Sequence alignment of the M. jannaschii TyrRS and the AzoF-RS of the Schultz lab. The alignment shows six differences in the protein sequences.
Two Amber-crtI-Variants
Figure 2: Cell pellets of the functional CrtI-variant (left), the amber318 (middle) and the amber353 (right) variants vortexed in 400 µL acetone.
Figure 3: Absorbance spectrum of the positive lycopene sample from 400 to 550 nm normalized with the measurement of a 1:1 acetone water sample.
Figure 4: Absorbance at 476 nm of the samples with extracted lycopene of the transformants with the functional crtI (left), the crtI with an amber codon at position 318 (middle) and with an amber codon at position 353 (right). The absorbance at 476 nm of a 1:1 aceton water solution was subtracted from the samples.
Basic Lycopene Production of the Cotransformants
Figure 5: Absorption spectrum of the extracted lycopene of the three samples. LP is the lycopene producing strain with an intact crtI, TAG318 has the amber-codon at position 318 in crtI, TAG353 has an amber-codon at position 353 in crtI.
Figure 6: Mean and standard deviation of the absorption spectrum of the three samples from 400 to 550 nm.
Irradiation, Switching and Stability of AzoF
Figure 7: Absorption spectrum of AzoF in LB media after irradiation with light of 367 nm wavelength. The black line shows the typical absorption of AzoF in the trans-conformation while the other lines show the absorption spectrum in the cis-conformation. The spectrum was measured directly after the irradiation, then after 2, 4, 17 and 20 hours. The sample was incubated at 30°C.
Influence of Photoswitching on the Lycopene Production
Figure 8: OD600 of three biological and three technical replicated of the crtI variants after cultivation.
Figure 9: Absorption spectrum of the four samples of the crtI variants, cultivated with AzoF supplemented to the media photoswitched to cis- or trans-conformation.
Figure 10: Absorption at 476 nm (indicator for lycopene) normalized to the OD600 (indication for the cell density) to calculate the relative lycopene production of each crtI variant cultivated with AzoF in cis- and trans-conformation.