Ssccb12040 (Talk | contribs) |
|||
Line 1: | Line 1: | ||
− | {{NCKU_Tainan}} | + | {{NCKU_Tainan/Header}} |
<html> | <html> | ||
− | + | <head> | |
− | + | <title>MathJax AsciiMath Test Page</title> | |
− | + | <script src="https://2017.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> | |
− | <div class=" | + | <style> |
− | + | #paragraph table { | |
− | <div class=" | + | border-width: 0px; |
− | <h1> | + | } |
− | + | </style> | |
− | < | + | </head> |
− | + | <body> | |
+ | <div class="container-fluid"> | ||
+ | <div class="row"> | ||
+ | <div class="col"> | ||
+ | <div id="top"> | ||
+ | </div> | ||
+ | <div id="category" class="vertical-container"> | ||
+ | <h1 class="wet">Model</h1> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
</div> | </div> | ||
− | <div class=" | + | <div class="container-fluid"> |
+ | <div class="row"> | ||
+ | <div id="paragraph" class="paragraph col-md-8 col-md-offset-1 col-xs-offset-1 col-xs-10"> | ||
+ | <h2 id="abstract"> | ||
+ | Abstract | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | In order to combine the sensing device with synthetic biotechnology, first of all, we built a theoretical model for our promoter P<sub>yeaR</sub> to describe the whole mechanism and reaction, which was simulated by simbiology. | ||
+ | <br> | ||
+ | Then we found out the concentration of each substance varied with time by Matlab, and approximate method was applied for choosing a proper model fitting with GFP fluorescence variation curve. | ||
+ | <br> | ||
+ | Furthermore, to improve our sensing detection, we built a statistical model by nonlinear regression and calibration, and created analysis method for sensing data by our empirical model constructed with data from more than 150 experiments; this model was able to distinguish 5 interval of nitrate concentration. | ||
+ | </p> | ||
+ | <h2 id="motivation"> | ||
+ | Motivation of Improve P<sub>yeaR</sub> Model | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | After taking a look to the research result of other pervious teams, we found out that it’s not enough describing the sensing reaction of P<sub>yeaR</sub> just with NsrR; so to realize the mechanism, the paper, Activation of yeaR-yoaG Operon Transcription by the Nitrate-Responsive Regulator NarL Is Independent of Oxygen-Responsive Regulator Fnr in Escherichia coli K-12, was referred. From figure 1. in the paper, no matter with or without O2, the influence of NsrR and NarL to NO<sub>3</sub><sup>-</sup> had not much difference. | ||
+ | <br> | ||
+ | Instead, from Figure 2. the influence of NsrR and NarL to P<sub>yeaR</sub> promotor was significant, which was the reason for us to consider the effects of NsrR and NarL while building a more complete model. | ||
+ | </p> | ||
+ | <div class="row imagerow"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/f/ff/T--NCKU_Tainan--model-paper1.png" alt="" class="img-responsive"> | ||
+ | <p> | ||
+ | Figure 1. | ||
+ | </p> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/7/70/T--NCKU_Tainan--model-paper2.png" alt="" class="img-responsive"> | ||
+ | <p> | ||
+ | Figure 2. | ||
+ | </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2 id="pyear"> | ||
+ | P<sub>yeaR</sub> Mechanism | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | There are Nap and NirK enzymes that can catalyze NO<sub>3</sub><sup>-</sup> to NO<sub>2</sub><sup>-</sup> and NO<sub>2</sub><sup>-</sup> to NO separately in our <i>E. coli</i> system. After paper searching, we found that the promotor’s reaction was controlled by two gene representing two binding sites, one of which was NarL, and the other was NsrR. NarL is able to sense both nitrate and nitrite, promoting P<sub>yeaR</sub> to produce GFP further. NsrR has the ability to repress the whole reaction except for the situation of nitric oxide on the biding site with the repression becoming weak and the block to GFP generation gone. | ||
+ | </p> | ||
+ | <div class="row imagerow"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/7/74/T--NCKU_Tainan--pyear_animation.gif" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <div class="row imagerow"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/b/b5/T--NCKU_Tainan--model1.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2 id="equation"> | ||
+ | Equations of Our Sensing Pathway Model | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | NO<sub>3</sub><sup>-</sup> will be consumed in two ways, one of which is turning into NO<sub>2</sub><sup>-</sup> by Nap enzyme , and the other becomes mRNA of GFP by NarL. | ||
+ | <br><br> | ||
+ | The rate of [NO<sub>3</sub><sup>-</sup>] can be expressed by: | ||
+ | </p> | ||
+ | <p style="text-align: center;"> | ||
+ | |||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mfrac><mrow><mi mathvariant="bold">d</mi><msup><mrow><mo>[</mo><msub><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><mi mathvariant="bold-italic">d</mi><mi mathvariant="bold-italic">t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mfrac><mrow><msub><mrow><mi mathvariant="bold-italic">V</mi><mi mathvariant="bold-italic">m</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold-italic">x</mi></mrow><mrow><mfenced separators="|"><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold-italic">p</mi></mrow></mfenced></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><msub><mrow><mi mathvariant="bold-italic">K</mi><mi mathvariant="bold-italic">m</mi></mrow><mrow><mfenced separators="|"><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">a</mi><mi mathvariant="bold-italic">p</mi></mrow></mfenced></mrow></msub><mo>+</mo><msup><mrow><mo>[</mo><msub><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow></mfrac><mo>-</mo><msub><mrow><mi mathvariant="bold-italic">k</mi><mi mathvariant="bold-italic">f</mi></mrow><mrow><mfenced separators="|"><mrow><msup><mrow><msub><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup></mrow></mfenced></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi mathvariant="bold-italic">N</mi><mi mathvariant="bold-italic">O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></math>------(1) | ||
+ | |||
+ | </p> | ||
+ | <p> | ||
+ | NO<sub>2</sub><sup>-</sup> can be produced by Nap enzyme, be consumed by NarL and NirK enzyme, and become mRNA of GFP along with NO. | ||
+ | <br> | ||
+ | <br> The rate of [NO<sub>2</sub><sup>-</sup>] can be expressed by: | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mfrac><mrow><mi mathvariant="normal">d</mi><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mrow><mi>V</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mfenced separators="|"><mrow><mi>N</mi><mi>a</mi><mi>p</mi></mrow></mfenced></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><msub><mrow><mi>K</mi><mi>m</mi></mrow><mrow><mfenced separators="|"><mrow><mi>N</mi><mi>a</mi><mi>p</mi></mrow></mfenced></mrow></msub><mo>+</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow></mfrac><mo>-</mo><msub><mrow><mi>k</mi><mi>f</mi></mrow><mrow><mfenced separators="|"><mrow><msup><mrow><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup></mrow></mfenced></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo><mo>-</mo><mfrac><mrow><msub><mrow><mi>V</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mfenced separators="|"><mrow><mi>N</mi><mi>i</mi><mi>r</mi><mi>K</mi></mrow></mfenced></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><msub><mrow><mi>K</mi><mi>m</mi></mrow><mrow><mfenced separators="|"><mrow><mi>N</mi><mi>i</mi><mi>r</mi><mi>K</mi></mrow></mfenced></mrow></msub><mo>+</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow></mfrac></math>------(2) | ||
+ | </p> | ||
+ | <p> | ||
+ | NO can be produced by NirK enzyme. | ||
+ | <br> | ||
+ | <br> The rate of [NO] can be expressed by: | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mfrac><mrow><mi mathvariant="normal">d</mi><mo>[</mo><mi mathvariant="normal">N</mi><mi mathvariant="normal">O</mi><mo>]</mo></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mrow><mi>V</mi><mi>m</mi><mi>a</mi><mi>x</mi></mrow><mrow><mo>(</mo><mi>N</mi><mi>i</mi><mi>r</mi><mi>K</mi><mo>)</mo></mrow></msub><mo>×</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow><mrow><msub><mrow><mi>K</mi><mi>m</mi></mrow><mrow><mo>(</mo><mi>N</mi><mi>i</mi><mi>r</mi><mi>K</mi><mo>)</mo></mrow></msub><mo>+</mo><msup><mrow><mo>[</mo><msub><mrow><mi>N</mi><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow><mrow><mo>-</mo></mrow></msup><mo>]</mo></mrow></mfrac></math>------(3) | ||
+ | </p> | ||
+ | <p> | ||
+ | There are 3 sources cause mRNA of GFP production; one is from NO<sub>3</sub><sup>-</sup>, another is from NO<sub>2</sub><sup>-</sup>, and the other is from NO. | ||
+ | <br> Also, owing to translating into GFP and gradually being degraded, mGFP will decreased. | ||
+ | </p> | ||
+ | <p> | ||
+ | The rate of [mGFP] can be expressed by: | ||
+ | </p> | ||
+ | <div class="row imagerow"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/1/13/T--NCKU_Tainan--model-equation.png" alt="" class="img-responsive" style="height:"> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | <p> | ||
+ | <strong> | ||
+ | Wrap(How can we derive this term) | ||
+ | </strong> | ||
+ | </p> | ||
+ | <p> | ||
+ | Finally , mRNA of GFP will be translated into GFP. | ||
+ | <br> | ||
+ | <br> The rate of [GFP] can be expressed by: | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mfrac><mrow><mi>d</mi><mo>[</mo><mi>G</mi><mi>F</mi><mi>P</mi><mo>]</mo></mrow><mrow><mi>d</mi><mi>t</mi></mrow></mfrac><mo>=</mo><mi>k</mi><mi>t</mi><mi>r</mi><mi>a</mi><mi>n</mi><mi>s</mi><mi>l</mi><mi>a</mi><mi>t</mi><mi>i</mi><mi>o</mi><mi>n</mi><mo>×</mo><mfenced open="[" close="]" separators="|"><mrow><mi>m</mi><mi>G</mi><mi>F</mi><mi>P</mi></mrow></mfenced><mo>-</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>G</mi><mi>F</mi><mi>P</mi></mrow></msub><mo>×</mo><mfenced open="[" close="]" separators="|"><mrow><mi>G</mi><mi>F</mi><mi>P</mi></mrow></mfenced></math>------(5) | ||
+ | </p> | ||
+ | <h3> | ||
+ | Parameter Table | ||
+ | </h3> | ||
+ | <table class="table margin_bottom" style="padding-left: 30px;"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th></th> | ||
+ | <th> | ||
+ | Description | ||
+ | </th> | ||
+ | <th> | ||
+ | Value | ||
+ | </th> | ||
+ | <th> | ||
+ | Unit(SI) | ||
+ | </th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td> | ||
+ | [NO<sub>3</sub><sup>-</sup>] (100ppm) | ||
+ | </td> | ||
+ | <td> | ||
+ | Nitrate initial value | ||
+ | </td> | ||
+ | <td> | ||
+ | 1.6x10<sup>-6</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | Km <sub>(Nap)</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | the NO3- at which the reaction rate is at half-maximum | ||
+ | </td> | ||
+ | <td> | ||
+ | 8x10<sup>-3</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | Vmax<sub>(Nap)</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Maximum velocity of Nap | ||
+ | </td> | ||
+ | <td> | ||
+ | 4.7x10<sup>-1</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/s x m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | Km<sub>(NirK)</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | the NO2- at which the reaction rate is at half-maximum | ||
+ | </td> | ||
+ | <td> | ||
+ | 2.5x10<sup>-1</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | Vmax<sub>(NirK)</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Maximum velocity of NirK | ||
+ | </td> | ||
+ | <td> | ||
+ | 5x10<sup>-3</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/s x m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | [P<sub>yeaR</sub>]<sub>activity</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Concentration of P<sub>yeaR</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | 10<sup>-10</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | ktranscription | ||
+ | </td> | ||
+ | <td> | ||
+ | Rate of mGFP synthesis | ||
+ | </td> | ||
+ | <td> | ||
+ | 1.8x10<sup>-5</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | kfno3 | ||
+ | </td> | ||
+ | <td> | ||
+ | Related constant of NO3- and NarL | ||
+ | </td> | ||
+ | <td> | ||
+ | 3x10<sup>-4</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | kfno2 | ||
+ | </td> | ||
+ | <td> | ||
+ | Related constant of NO2- and NarL | ||
+ | </td> | ||
+ | <td> | ||
+ | 6x10<sup>-5</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><msub><mrow><mi>r</mi></mrow><mrow><mi>m</mi><mi>G</mi><mi>F</mi><mi>P</mi></mrow></msub></math> | ||
+ | </td> | ||
+ | <td> | ||
+ | mGFP degradation rate | ||
+ | </td> | ||
+ | <td> | ||
+ | 5x10<sup>-5</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><msub><mrow><mi>r</mi></mrow><mrow><mi>G</mi><mi>F</mi><mi>P</mi></mrow></msub></math> | ||
+ | </td> | ||
+ | <td> | ||
+ | GFP degradation rate | ||
+ | </td> | ||
+ | <td> | ||
+ | 2.5x10<sup>-6</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | ktranslation | ||
+ | </td> | ||
+ | <td> | ||
+ | Rate of GFP synthesis | ||
+ | </td> | ||
+ | <td> | ||
+ | 4x10<sup>-4</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | 1/s | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | kd(NsrR) | ||
+ | </td> | ||
+ | <td> | ||
+ | Dissociation constant of NsrR | ||
+ | </td> | ||
+ | <td> | ||
+ | 3.5x10<sup>-6</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | m<sup>3</sup>/mol | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | k<sub>NO</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Dissociation constant of NO | ||
+ | </td> | ||
+ | <td> | ||
+ | 1.4x10<sup>-4</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | [NsrR] | ||
+ | </td> | ||
+ | <td> | ||
+ | Concentration of NsrR | ||
+ | </td> | ||
+ | <td> | ||
+ | 10<sup>-6</sup> | ||
+ | </td> | ||
+ | <td> | ||
+ | mol/m<sup>3</sup> | ||
+ | </td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | <h2 id="simulation"> | ||
+ | Simulation | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | Simbiology of Matlab is used to simulate the model: | ||
+ | </p> | ||
+ | <div class="row imagerow" style="margin-bottom: 100px;"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/c/c7/T--NCKU_Tainan--model2.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/e/ec/T--NCKU_Tainan--model3.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/0/03/T--NCKU_Tainan--model4.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/2/27/T--NCKU_Tainan--model5.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2 id="GFP"> | ||
+ | Get a Function to Describe GFP varied with time | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | By taking the parameters into the (1)~(5) equations, the [GFP] can be described by: | ||
+ | </p> | ||
+ | <p style="font-size: 18px;text-align:center;"> | ||
+ | GFP(t)= | ||
+ | <span style="color:#00b3ea;">(2.9x10<sup>-8</sup>)e<sup>-2.5x10<sup>-6t</sup></sup></span> - | ||
+ | <span style="color:#f9cb8f;">(3.08x10<sup>-8</sup>)e<sup>-4.485x10<sup>-4t</sup></sup></span> + | ||
+ | <span style="color:#f19181;">(6.06x10<sup>-10</sup>)e<sup>-2x10<sup>-2t</sup></sup></span> - | ||
+ | <span style="color:#3cbac8;">(1.48x10<sup>-9</sup>)e<sup>-1.74x10<sup>-2t</sup></sup></span> | ||
+ | </p> | ||
+ | <p class="margin_bottom" style="text-align: center;"> | ||
+ | (This equation is for initial concentration of nitrate 100ppm) | ||
+ | </p> | ||
+ | <h2 id="fitting"> | ||
+ | The Fitting Results | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | As to know each term how to influence GFP, we divide GFP(t) into 4 parts: | ||
+ | </p> | ||
+ | <ol> | ||
+ | <li> | ||
+ | <span style="color:#00b3ea;">(2.9x10<sup>-8</sup>)e<sup>-2.5x10<sup>-6t</sup></sup></span> | ||
+ | </li> | ||
+ | <li> | ||
+ | <span style="color:#f9cb8f;">(3.08x10<sup>-8</sup>)e<sup>-4.485x10<sup>-4t</sup></sup></span> | ||
+ | </li> | ||
+ | <li> | ||
+ | <span style="color:#f19181;">(6.06x10<sup>-10</sup>)e<sup>-2x10<sup>-2t</sup></sup></span> | ||
+ | </li> | ||
+ | <li> | ||
+ | <span style="color:#3cbac8;">(1.48x10<sup>-9</sup>)e<sup>-1.74x10<sup>-2t</sup></sup></span> | ||
+ | </li> | ||
+ | </ol> | ||
+ | <div class="row imagerow" style="margin-bottom: 100px;"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/0/0b/T--NCKU_Tainan--model6.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <p> | ||
+ | Obviously, we easily know the influence within 2 hours of terms A and B are more essential than that of terms C and D. Consequently, we modify equation to be simpler, which neglact C and D terms, to fit our data getting from experiments with our device | ||
+ | and with powder. | ||
+ | <br>By using general model Exp2: | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mi mathvariant="normal">f</mi><mfenced separators="|"><mrow><mi mathvariant="normal">x</mi></mrow></mfenced><mo>=</mo><mi mathvariant="normal">d</mi><mo>×</mo><msup><mrow><mi mathvariant="normal">e</mi></mrow><mrow><mi mathvariant="normal">g</mi><mi mathvariant="normal">x</mi></mrow></msup><mo>+</mo><mi>h</mi><mo>×</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>j</mi><mi>x</mi></mrow></msup></math> | ||
+ | </p> | ||
+ | <div class="row imagerow" style="margin-bottom: 100px;"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/3/3f/T--NCKU_Tainan--model7.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | <br> | ||
+ | <br> | ||
+ | <br> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/8/8a/T--NCKU_Tainan--model8.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h3> | ||
+ | Coefficients (with 95% confidence bounds): | ||
+ | </h3> | ||
+ | <p style="text-align: center;"> | ||
+ | Coefficients Table | ||
+ | </p> | ||
+ | <table class="table"> | ||
+ | <thead> | ||
+ | <tr> | ||
+ | <th> | ||
− | < | + | </th> |
− | < | + | <th> |
− | <p> | + | value |
− | + | </th> | |
− | </ | + | <th> |
+ | min | ||
+ | </th> | ||
+ | <th> | ||
+ | max | ||
+ | </th> | ||
+ | </tr> | ||
+ | </thead> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td> | ||
+ | d | ||
+ | </td> | ||
+ | <td> | ||
+ | 3382 | ||
+ | </td> | ||
+ | <td> | ||
+ | 3364 | ||
+ | </td> | ||
+ | <td> | ||
+ | 3399 | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | g | ||
+ | </td> | ||
+ | <td> | ||
+ | 0.04229 | ||
+ | </td> | ||
+ | <td> | ||
+ | 0.03939 | ||
+ | </td> | ||
+ | <td> | ||
+ | 0.4518 | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | h | ||
+ | </td> | ||
+ | <td> | ||
+ | -70.48 | ||
+ | </td> | ||
+ | <td> | ||
+ | -86.6 | ||
+ | </td> | ||
+ | <td> | ||
+ | -54.36 | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | j | ||
+ | </td> | ||
+ | <td> | ||
+ | -1.119 | ||
+ | </td> | ||
+ | <td> | ||
+ | -1.22 | ||
+ | </td> | ||
+ | <td> | ||
+ | -1.018 | ||
+ | </td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
+ | <p style="text-align: center"> | ||
+ | Goodness of fit: | ||
+ | <br> | ||
+ | SSE: 3.151e+04 | ||
+ | <br> | ||
+ | R-square: 0.9981 | ||
+ | <br> | ||
+ | Adjusted R-square: 0.998 | ||
+ | <br> | ||
+ | RMSE: 11.53 | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | μvolt<math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mfenced separators="|"><mrow><mi mathvariant="bold">t</mi></mrow></mfenced><mo>=</mo><mn>3382</mn><mo>×</mo><msup><mrow><mi mathvariant="bold">e</mi></mrow><mrow><mn>0.04229</mn><mi mathvariant="bold">t</mi></mrow></msup><mo>-</mo><mn>70.48</mn><mo>×</mo><msup><mrow><mi mathvariant="bold-italic">e</mi></mrow><mrow><mo>-</mo><mn>1.119</mn><mi mathvariant="bold-italic">t</mi></mrow></msup></math> | ||
+ | |||
+ | (for 60 ppm) | ||
+ | </p> | ||
+ | <h2 id="statistical"> | ||
+ | Statistical Model | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | We randomly set 15 ppm of concentration of nitrate as the separating level of clean and polluted water. Hence, we dichotomized the concentration of nitrate into binary data (the outcomes of Bernoulli trials). Then, in order to fit a general linear model | ||
+ | we use the concentration of nitrate, time as explain variables, and the electrical signals collected from our device as response variables. | ||
+ | <br>Here is the regression equation: | ||
+ | </p> | ||
+ | <p style="text-align: center"> | ||
+ | <math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><msub><mrow><mi mathvariant="normal">Y</mi></mrow><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">j</mi></mrow></msub><mo>=</mo><mfrac><mrow><mn>248.8</mn><msub><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">j</mi></mrow></msub></mrow><mrow><mn>781.9</mn><mo>+</mo><msub><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">j</mi></mrow></msub></mrow></mfrac><mo>+</mo><mn>0.1374</mn><msub><mrow><mi mathvariant="normal">T</mi></mrow><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">j</mi></mrow></msub><mo>.</mo><msub><mrow><mi mathvariant="normal">X</mi></mrow><mrow><mi mathvariant="normal">i</mi></mrow></msub><mo>+</mo><msub><mrow><mi mathvariant="normal">ε</mi></mrow><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">j</mi></mrow></msub></math> | ||
+ | </p> | ||
+ | <table class="table center-block" style="margin-bottom: 100px;padding-left: 30px"> | ||
+ | <tbody> | ||
+ | <tr> | ||
+ | <td> | ||
+ | Y<sub>ij</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Electrical signals collected from i <sup>th</sup> time series data with j<sup>th</sup> second. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | T<sub>ij</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Time of i<sup>th</sup> time series data with j<sup>th</sup> second. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | X<sub>i</sub> = 1 | ||
+ | </td> | ||
+ | <td> | ||
+ | When the concentration of nitrate above 15 ppm. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | X<sub>i</sub> = 0 | ||
+ | </td> | ||
+ | <td> | ||
+ | When the concentration of nitrate below 15 ppm. | ||
+ | </td> | ||
+ | </tr> | ||
+ | <tr> | ||
+ | <td> | ||
+ | ε<sub>ij</sub> | ||
+ | </td> | ||
+ | <td> | ||
+ | Random error term of i<sub>th</sub> time series data with j<sub>th</sub> second. | ||
+ | </td> | ||
+ | </tr> | ||
+ | </tbody> | ||
+ | </table> | ||
− | |||
− | |||
− | |||
− | |||
− | <div class=" | + | <p> |
− | < | + | After that, we use calibration to forecast the concentration of nitrate within the time series data with our model by minimizing the sum of square of time series data from 1^stsecond to 〖1800〗^th second. The training sensitivity and specificity are shown |
+ | in the table below. | ||
+ | </p> | ||
+ | <div class="row imagerow" style="margin-bottom: 100px;"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/9/97/T--NCKU_Tainan--model9.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2 id="empirical"> | ||
+ | Empirical Model | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
+ | In order to build an empirical model for our sensing boat, we had done more than 150 times experiments setting up our database. | ||
+ | <br>We chose 5 intervals: | ||
+ | </p> | ||
+ | <p style="text-align: center;"> | ||
+ | 0 – 4 ppm | ||
+ | <br> 4 – 10 ppm | ||
+ | <br> 10 – 20 ppm | ||
+ | <br> 20 – 60 ppm | ||
+ | <br> Over 60 ppm | ||
+ | <br> | ||
+ | </p> | ||
+ | <p> | ||
+ | And our sensing device only need to detect the Optical signal on 5 min, 10 min, 15 min, 20 min. By using this method, we can easily, quickly and precisely distinguish the concentration into this 5 intervals. | ||
+ | </p> | ||
+ | <div class="row imagerow" style="margin-bottom: 100px;"> | ||
+ | <div class="col-12"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/d/df/T--NCKU_Tainan--model10.png" alt="" class="img-responsive"> | ||
+ | </div> | ||
+ | </div> | ||
+ | <h2 id="conclusion"> | ||
+ | Conclusion | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p class="margin_bottom"> | ||
+ | Not only to build a more complete model, according to species and application in the reality, we can also set different intervals by empirical method and any separating level by statistical method. With this advance, we are able to get the results within | ||
+ | 20 to 30 minutes, which is quicker and more precise as well. | ||
+ | </p> | ||
+ | <h2 id="references"> | ||
+ | References | ||
+ | </h2> | ||
+ | <hr> | ||
+ | <p> | ||
− | + | </p> | |
− | + | ||
− | + | ||
− | + | ||
− | </p> | + | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | </div> | ||
+ | <div id="sidemenu" class="col-md-2"> | ||
+ | <div class="list-group"> | ||
+ | <a onclick="scrollto('#abstract')" class="list-group-item">Abstract</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#motivation')" class="list-group-item">Motivation of Improve P<sub>yeaR</sub> Model</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#pyear')" class="list-group-item">P<sub>yeaR</sub> Mechanism</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#equation')" class="list-group-item">Equations of Our Sensing Pathway Model</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#simulation')" class="list-group-item">Simulation</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#GFP')" class="list-group-item">Get a Function to Describe GFP varied with time</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#fitting')" class="list-group-item">The Fitting Results</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#statistical')" class="list-group-item">Statistical Model</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#empirical')" class="list-group-item">Empirical Model</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#conclusion')" class="list-group-item">Conclusion</a> | ||
+ | <hr> | ||
+ | <a onclick="scrollto('#references')" class="list-group-item">References</a> | ||
+ | <hr> | ||
+ | <a class="list-group-item top"><i onclick="scrollto('#top')" class="fa fa-arrow-up fa-1x" aria-hidden="true"></i></a> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
</div> | </div> | ||
+ | </body> | ||
</html> | </html> |
Revision as of 16:37, 30 October 2017
Model
Abstract
In order to combine the sensing device with synthetic biotechnology, first of all, we built a theoretical model for our promoter PyeaR to describe the whole mechanism and reaction, which was simulated by simbiology.
Then we found out the concentration of each substance varied with time by Matlab, and approximate method was applied for choosing a proper model fitting with GFP fluorescence variation curve.
Furthermore, to improve our sensing detection, we built a statistical model by nonlinear regression and calibration, and created analysis method for sensing data by our empirical model constructed with data from more than 150 experiments; this model was able to distinguish 5 interval of nitrate concentration.
Motivation of Improve PyeaR Model
After taking a look to the research result of other pervious teams, we found out that it’s not enough describing the sensing reaction of PyeaR just with NsrR; so to realize the mechanism, the paper, Activation of yeaR-yoaG Operon Transcription by the Nitrate-Responsive Regulator NarL Is Independent of Oxygen-Responsive Regulator Fnr in Escherichia coli K-12, was referred. From figure 1. in the paper, no matter with or without O2, the influence of NsrR and NarL to NO3- had not much difference.
Instead, from Figure 2. the influence of NsrR and NarL to PyeaR promotor was significant, which was the reason for us to consider the effects of NsrR and NarL while building a more complete model.
Figure 1.
Figure 2.
PyeaR Mechanism
There are Nap and NirK enzymes that can catalyze NO3- to NO2- and NO2- to NO separately in our E. coli system. After paper searching, we found that the promotor’s reaction was controlled by two gene representing two binding sites, one of which was NarL, and the other was NsrR. NarL is able to sense both nitrate and nitrite, promoting PyeaR to produce GFP further. NsrR has the ability to repress the whole reaction except for the situation of nitric oxide on the biding site with the repression becoming weak and the block to GFP generation gone.
Equations of Our Sensing Pathway Model
NO3- will be consumed in two ways, one of which is turning into NO2- by Nap enzyme , and the other becomes mRNA of GFP by NarL.
The rate of [NO3-] can be expressed by:
------(1)
NO2- can be produced by Nap enzyme, be consumed by NarL and NirK enzyme, and become mRNA of GFP along with NO.
The rate of [NO2-] can be expressed by:
------(2)
NO can be produced by NirK enzyme.
The rate of [NO] can be expressed by:
------(3)
There are 3 sources cause mRNA of GFP production; one is from NO3-, another is from NO2-, and the other is from NO.
Also, owing to translating into GFP and gradually being degraded, mGFP will decreased.
The rate of [mGFP] can be expressed by:
Wrap(How can we derive this term)
Finally , mRNA of GFP will be translated into GFP.
The rate of [GFP] can be expressed by:
------(5)
Parameter Table
Description | Value | Unit(SI) | |
---|---|---|---|
[NO3-] (100ppm) | Nitrate initial value | 1.6x10-6 | mol/m3 |
Km (Nap) | the NO3- at which the reaction rate is at half-maximum | 8x10-3 | mol/m3 |
Vmax(Nap) | Maximum velocity of Nap | 4.7x10-1 | mol/s x m3 |
Km(NirK) | the NO2- at which the reaction rate is at half-maximum | 2.5x10-1 | mol/m3 |
Vmax(NirK) | Maximum velocity of NirK | 5x10-3 | mol/s x m3 |
[PyeaR]activity | Concentration of PyeaR | 10-10 | mol/m3 |
ktranscription | Rate of mGFP synthesis | 1.8x10-5 | 1/s |
kfno3 | Related constant of NO3- and NarL | 3x10-4 | 1/s |
kfno2 | Related constant of NO2- and NarL | 6x10-5 | 1/s |
mGFP degradation rate | 5x10-5 | 1/s | |
GFP degradation rate | 2.5x10-6 | 1/s | |
ktranslation | Rate of GFP synthesis | 4x10-4 | 1/s |
kd(NsrR) | Dissociation constant of NsrR | 3.5x10-6 | m3/mol |
kNO | Dissociation constant of NO | 1.4x10-4 | mol/m3 |
[NsrR] | Concentration of NsrR | 10-6 | mol/m3 |
Simulation
Simbiology of Matlab is used to simulate the model:
Get a Function to Describe GFP varied with time
By taking the parameters into the (1)~(5) equations, the [GFP] can be described by:
GFP(t)= (2.9x10-8)e-2.5x10-6t - (3.08x10-8)e-4.485x10-4t + (6.06x10-10)e-2x10-2t - (1.48x10-9)e-1.74x10-2t
(This equation is for initial concentration of nitrate 100ppm)
The Fitting Results
As to know each term how to influence GFP, we divide GFP(t) into 4 parts:
- (2.9x10-8)e-2.5x10-6t
- (3.08x10-8)e-4.485x10-4t
- (6.06x10-10)e-2x10-2t
- (1.48x10-9)e-1.74x10-2t
Obviously, we easily know the influence within 2 hours of terms A and B are more essential than that of terms C and D. Consequently, we modify equation to be simpler, which neglact C and D terms, to fit our data getting from experiments with our device
and with powder.
By using general model Exp2:
Coefficients (with 95% confidence bounds):
Coefficients Table
value | min | max | |
---|---|---|---|
d | 3382 | 3364 | 3399 |
g | 0.04229 | 0.03939 | 0.4518 |
h | -70.48 | -86.6 | -54.36 |
j | -1.119 | -1.22 | -1.018 |
Goodness of fit:
SSE: 3.151e+04
R-square: 0.9981
Adjusted R-square: 0.998
RMSE: 11.53
μvolt (for 60 ppm)
Statistical Model
We randomly set 15 ppm of concentration of nitrate as the separating level of clean and polluted water. Hence, we dichotomized the concentration of nitrate into binary data (the outcomes of Bernoulli trials). Then, in order to fit a general linear model
we use the concentration of nitrate, time as explain variables, and the electrical signals collected from our device as response variables.
Here is the regression equation:
Yij | Electrical signals collected from i th time series data with jth second. |
Tij | Time of ith time series data with jth second. |
Xi = 1 | When the concentration of nitrate above 15 ppm. |
Xi = 0 | When the concentration of nitrate below 15 ppm. |
εij | Random error term of ith time series data with jth second. |
After that, we use calibration to forecast the concentration of nitrate within the time series data with our model by minimizing the sum of square of time series data from 1^stsecond to 〖1800〗^th second. The training sensitivity and specificity are shown in the table below.
Empirical Model
In order to build an empirical model for our sensing boat, we had done more than 150 times experiments setting up our database.
We chose 5 intervals:
0 – 4 ppm
4 – 10 ppm
10 – 20 ppm
20 – 60 ppm
Over 60 ppm
And our sensing device only need to detect the Optical signal on 5 min, 10 min, 15 min, 20 min. By using this method, we can easily, quickly and precisely distinguish the concentration into this 5 intervals.
Conclusion
Not only to build a more complete model, according to species and application in the reality, we can also set different intervals by empirical method and any separating level by statistical method. With this advance, we are able to get the results within 20 to 30 minutes, which is quicker and more precise as well.
References