Difference between revisions of "Team:NPU-China/Model"

Line 25: Line 25:
 
     <![endif]-->
 
     <![endif]-->
 
     <style>
 
     <style>
 
 
     </style>
 
     </style>
 
</head>
 
</head>
Line 36: Line 35:
 
         <div class="container">
 
         <div class="container">
 
             <div class="navbar-header">
 
             <div class="navbar-header">
                 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button>
+
                 <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
                    <span class="sr-only">Toggle navigation</span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                    <span class="icon-bar"></span>
 +
                </button>
 
                 <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
 
                 <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
                  <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
+
                    <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
 
                 </a>
 
                 </a>
 
             </div>
 
             </div>
 
             <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 
             <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 
                 <ul class="nav navbar-nav navbar-right">
 
                 <ul class="nav navbar-nav navbar-right">
                     <li class="active"> <a href="https://2017.igem.org/Team:NPU-China">Home</a> </li>
+
                     <li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team<b class="caret"></b></a>
+
                        <a href="https://2017.igem.org/Team:NPU-China">Home</a>
 +
                    </li>
 +
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project<b class="caret"></b></a>
+
                     <li class="dropdown active">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a> </li>
+
                            </li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a> </li>
+
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts<b class="caret"></b></a>
+
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a> </li>
+
                     <li>
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP<b class="caret"></b></a>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 +
                    </li>
 +
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a> </li>
+
                     <li>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a> </li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
                     <li> <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a> </li>
+
                    </li>
 +
                     <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
 +
                    </li>
 +
                     <li>
 +
                        <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
 +
                    </li>
  
                     <li class="dropdown"> <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook<b class="caret"></b></a>
+
                     <li class="dropdown">
 +
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
 +
                            <b class="caret"></b>
 +
                        </a>
 
                         <ul class="dropdown-menu">
 
                         <ul class="dropdown-menu">
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a> </li>
+
                             <li>
                             <li> <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a> </li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
 +
                            </li>
 +
                             <li>
 +
                                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
 +
                            </li>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
Line 88: Line 145:
 
     </nav>
 
     </nav>
  
     <!-- Header Carousel -->
+
     <!-- Page Content -->
    <header id="myCarousel" class="carousel slide">
+
        <!-- Indicators -->
+
        <div class="carousel-indicators">
+
            <li data-target="#myCarousel" data-slide-to="0" class="active"></li>
+
            <li data-target="#myCarousel" data-slide-to="1"></li>
+
            <li data-target="#myCarousel" data-slide-to="2"></li>
+
        </div>
+
 
+
        <!-- Wrapper for slides -->
+
        <div class="carousel-inner">
+
            <div class="item active">
+
                <img src="https://static.igem.org/mediawiki/2017/1/1f/Npu-banner1.jpg">
+
 
+
            </div>
+
            <div class="item">
+
                <img src="https://static.igem.org/mediawiki/2017/0/06/Npu-banner3.jpg">
+
            </div>
+
            <div class="item">
+
                <img src="https://static.igem.org/mediawiki/2017/2/28/Npu-banner2.jpg">
+
            </div>
+
        </div>
+
        <a class="left carousel-control" href="#myCarousel" data-slide="prev">
+
            <span class="icon-prev"></span>
+
        </a>
+
        <a class="right carousel-control" href="#myCarousel" data-slide="next">
+
            <span class="icon-next"></span>
+
        </a>
+
        <!-- Controls -->
+
    </header>
+
 
+
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
 
     <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
         <!-- Page Content -->
+
         <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/4/46/%E9%A2%98%E7%9B%AE%E5%B0%8F%E9%80%9A%E6%A0%8Fdesign.jpg">
        <div class="container">
+
        <div class="container" style="padding-top:70px">
 
+
            <div class="row">
            <div class="row" style=" padding-top:70px">
+
 
                 <div class="col-md-12">
 
                 <div class="col-md-12">
                     <h2 class="page-header" align="center" >Abstract</h2>
+
                     <h2 style="text-align:center">Introduction</h2>
                     <h4>Acrylic acid is a bulk chemical raw material, which is widely used in many fields because of its excellent
+
                     <h4>This year our project is the introduction of acrylic synthetic routes in Escherichia coli or Saccharomyces
                         polymerization capacity, such as paint, glue, and even mobile phone screen protective film. The average
+
                        cerevisiae to produce acrylic acid.
                         annual market demand of acrylic acid is up to 8 million tons, and the market value is nearly 10 billion
+
                        <br>
                         US dollars. It has broad market prospect. At present, acrylic acid is made from propylene (which
+
                        <br> Primitive metabolic path map
                         is obtained by petroleum cracking) after multi-step treatment. The production process causes pollution,
+
                        <br>
                         high energy consumption and it is unsustainable.<br> This year, we aim to use a green and environmentally
+
                        <br> We have a rational new design and transformation of the core enzyme ceaS2, at the same time, we
                         friendly carbon source, glycerol to achieve all green production of acrylic acid. Compared to traditional
+
                        also want to be optimized to improve the acrylic acid production in the metabolic flow.
                         chemical synthesis methods, Synbio is green and sustainable, and glycerol is cheaper than ethylene.
+
                        <br> We know that for Escherichia coli, the carbon flow rate of its original glycerol metabolic pathway
 +
                         may not be sufficient, and if the new glycerol metabolic pathway can be used to increase the carbon
 +
                         flow of DHAP or G3P, the substrate of the core enzyme ceaS2 can be increased Concentration to increase
 +
                        acrylic acid production.
 +
                        <br> Therefore, through the literature review, we found two enzymes which can achieve efficient conversion
 +
                         of glycerol to generate DHAP the same way.
 +
                        <br> In our new approach, Glycerol dehydrogenase (Gly DH) is capable of efficiently converting glycerol
 +
                         to 1,3-Dihydroxyacetone (DHA) and then phosphorylates DHA to DHAP via Dihydroxyacetone kinase (DAK).
 +
                        <br>
 +
                        <br> New route map
 +
                        <br> Before the implementation of the formal experiment, we need to model it to analyze the impact of
 +
                         the introduction of new routes on the original metabolic flow, especially the two intermediates of
 +
                        DHAP or G3P. Specifically, we care about the following two issues:
 +
                        <br> 1. Has the DHAP or G3P's carbon flow improved after the introduction of new metabolic pathways?
 +
                        Is it compared to the previous increase in production?
 +
                        <br> 2. The introduction of new pathways after the entire metabolic pathway is stable and robust. How
 +
                        is it?
 +
                        <br> In order to answer these two questions, we established a carbon metabolic flow model.
 +
                    </h4>
 +
                    <h4>The overall workflow is as follows:</h4>
 +
                    <h2 style="text-align:center">Parameter estimation</h2>
 +
                    <h4>There are many parameters to be determined in the model. Most of these kinetic parameters can be found
 +
                        in the literature or in the database, but at the same time, there are some kinetic parameters of
 +
                        the enzyme we are looking for. Its organic matter, or the temperature and ph of the enzyme are different.
 +
                         Therefore, we need to re-estimate this part of the parameters.
 +
                        <br>
 +
                        <br> In the process data link, we cited the method using the data point weighting of University of Manchester
 +
                        in year 2016 . The weighting of the samples is as follows:
 +
                        <br> 1. When the sample PH is the same, the sample is weighted by 4 .2 when they are close. 1 when they
 +
                        differ much.
 +
                        <br> 2. When the sample temperature is the same, the pH is the same.
 +
                        <br> 3. When the samples are from the same species , the weight of the sample is 4.When they are the
 +
                        non-identical species and are the prokaryotes,or the corresponding species mutated to the corresponding
 +
                         species, the weight is 2. When they are the non-identical species and are the eukaryotes, the weight
 +
                        is 1.
 +
                        <br> 4. Try to delete the missing data. If there are some essential samples of the temperature and PH
 +
                        missing, then the corresponding weight is 2.
 +
                        <br>
 +
                        <br> 1.kernel density estimate 2. Gaussian mixed model.
 +
                        <br>
 +
                        <br> The fourth point reflects our point of view of Bayesian. In the absence of prior knowledge of the
 +
                        case, we take as much as possible the weight of neutrality.
 +
                        <br> Based on the points above, we get a new parametric vector after weighting.In our model, we do the
 +
                        fitting of the probability density according to the two methods of the parameter vector.
 +
                        <br> 1.kernel density estimate 2. Gaussian mixed model.
 
                     </h4>
 
                     </h4>
                 
 
                </div>
 
            </div>
 
       
 
            <!-- Marketing Icons Section -->
 
            <div class="row" style="padding-top:70px">
 
                <div class="col-md-12">
 
                    <h2 class="page-header" align="center">We construct cell factory based on 4 levels, which are—</h2>
 
                    <br>
 
                </div>
 
            </div>
 
  
 
+
                    <h2 style="text-align:center">The basic workflow of parameter estimation:</h2>
 
+
                     <h4>The Gaussian mixture model can be approximated to any real probability distribution in theory. The EM
 
+
                         algorithm is used to estimate the parameters required for the model. And we use the Gaussian mixture
            <div class="row">
+
                        model to estimate the probability density of the possible distribution of parameters.
                <div class="col-md-6 img-portfolio">
+
                        <br> After making the probability distribution, we select Bin randomly, which meet the conditions of
                     <a href="portfolio-item.html">
+
                        width = len / 10.And we select the most possible bin based on the CDF, and estimate the corresponding
                         <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/a/ac/Ceas2.png">
+
                         parameters when the bin reach average value.
                    </a>
+
                        <br> Finally, we get the estimated parameter values, as well as the corresponding parameters of the original
                    <h3 align="center">
+
                        PDF. The specific form and parameter values are as follows:
                         <a href="portfolio-item.html">Core Part</a>
+
                        <br> The reaction path of the original pathway is Gly to Gly-3-p and then to DAHP
                    </h3>
+
                        <br> The original pathway belongs to the reaction of a single channel, and there is a random bibi reaction
                    <h4>We use ceaS2 enzyme as the core part, but acrylic acid is a byproduct of ceaS2 enzyme, the wild type
+
                        and an irreversible Mickey equation reaction. The reaction involves two enzymes paticipating - glpk
                         's catalytic effect is very weak, whose production is only 1mg/L. So we hope to improve the catalytic
+
                        and glpD. We assume that the reaction concentration of these two enzymes is 0.01 mM, assuming that
                         effect of ceaS2 enzyme.<br> We designed ceaS2 enzyme mutants via the AEMD(Auto Enzyme Mutation Design)
+
                         the initial [Gly] concentration is 10 mM, the initial concentration of ATP 10 mM, Gly-3 The concentration
                         platform and screened for better-worked ceaS2 mutants by HPLC(High Performance Liquid Chromatography)
+
                        of -p 0 mM and the concentration of DHAP 0 mM at the same time.
                         and HTS(High throughput screening).
+
                        <br>
 +
                        <br> In this reaction, we make the following assumptions about our model:
 +
                         <br> 1. The ATP of the E.coil system is given externally completely, assuming that the culture conditions
 +
                        given externally are sufficient and ATP maintains a stable constant.
 +
                        <br> 2. Assume that the substrate involved in the reaction does not participate in other reactions.
 +
                         <br> In order to determine the yield of the target product, we chose to observe the efficiency of the
 +
                         DHAP yield estimation system in view of the lack of basic Deas2 enzyme data.
 +
                        <br>
 
                     </h4>
 
                     </h4>
                </div>
+
                    <h4 style="text-align:center">Changes of metabolic flux before passage</h4>
                <div class="col-md-6 img-portfolio">
+
                     <h4>
                     <a href="portfolio-item.html">
+
                        <br> We can observe that the DHAP stops growing close to 50 minutes.
                         <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/8/85/System.png" alt="">
+
                        <br>
                     </a>
+
                         <br> Then, we need to test the carbon pathway through the modified pathway, And add a metabolic pathway
                     <h3 align="center">
+
                        enzyme-catalyzed by GlyDH enzyme and DAK in the original path, while the need for NOX enzyme and
                        <a href="portfolio-item.html">System</a>
+
                        CAT enzyme from the role of NAD + supplement, resulting in DHA, and finally Phosphorylation produces
                     </h3>
+
                        DHAP.
                    <h4>Respectively, E. coli and S. cerevisiae are the two sorts of model organisms that are most convenient
+
                        <br> metabolic flow after the transformation of the reaction model. According to the actual situation
                         to operate in the prokaryote and eukaryote. Therefore, in terms of our choice of the chassis organisms,
+
                        of the reaction, we make the following assumptions:
                         we have them both tested, which were E. coli MG1655 and S. cerevisiae BY4741 individually.
+
                        <br> 1. In the reaction , due to the process of hydrogen peroxide to the production of O2, that is, the
 +
                        process of generating acceptor, is faster, we will regard the reaction of NOX enzyme NADH catalytic
 +
                        as an ordinary Michael's equation, rather than ordered sequence reaction.
 +
                        <br> 2. Random pairs of sequence reactions and ordered sequence reaction equations are identical. So
 +
                        we substrate which is identified as the [A] substrate depending on the integrity of the data.
 +
                        <br>
 +
                     </h4>
 +
                     <h4 style="text-align:center">Metabolic pathways after transformation</h4>
 +
                     <h4>
 +
                        <br> We can see that the rate of DHAP is faster after changing the metabolic pathway, which means that
 +
                        the higher the output per unit time after being put in use, the sooner the reaction is done. Compared
 +
                        to the pre-improved pathway ,the reaction finishes roughly five minutes ahead.
 +
                        <br> Sensitive analysis
 +
                        <br> In the previous pathway study, we noted that the Kcat values of glpK and GlyDH enzymes are unknown
 +
                         (we do not have a large deviation in the absence of a sample expressed in E.coil).
 +
                        <br> The Kcat value of the reaction of propanal is the Kcat value of the reaction of Gly and GlyDH. It
 +
                        is also assumed that the K63 ratio of the two enzymes is 2: 1.
 +
                        <br> We often use Kcat / Km to describe the catalytic efficiency of different enzymes for the same substrate,
 +
                         and as a result of our experiments, GlyDH exhibited higher catalytic efficiency than glpK. Thus we
 +
                        assume that the GlyDH enzyme and the glpK enzyme satisfy the following relationship:
 +
                        <br> GlyDH enzyme activity and the Km value for gly and the Km value of the glpk enzyme to gly have been
 +
                        known in previous studies. Next we adjust the alpha coefficient to study the effect of different
 +
                        ratios on the overall metabolic flow.
 
                     </h4>
 
                     </h4>
 +
                    <br>
 +
                    <h4 style="text-align:center">KATA Sensitivity Test before Modification</h4>
 +
                    <br>
 +
                    <h4 style="text-align:center">KATA Sensitivity Test after Modification</h4>
 +
                    <h4>
 +
                        <br> We show the highest ratio (1000) and the lowest ratio (0.001) in yellow and blue lines respectively.
 +
                        The pre-transformation pathway is most sensitive to the change of Kcat in glpK enzyme, and the metabolic
 +
                        pathway of the target substrate is transformed with the change of α Rate is always higher than the
 +
                        pre-transformation pathway, even when the glpK Kcat / Km value is 100 times the GlyDH, the reason
 +
                        may be DAK enzyme catalytic efficiency’s higher than glpD.
 +
                        <br> As we can see, the previous reaction is dependent on ATP, and in the previous hypothesis, we make
 +
                        ATP stable in the constant .In order to analyze the ATP concentration changes on the impact of glycerol
 +
                        conversion, we add a Standard deviation of 0.05, mean of the normal distribution of variables to
 +
                        disturb the timing of the concentration of ATP in ODE.
 +
                        <br> For the sake of us to observe the significant results, we assume that the initial concentration
 +
                        of ATP is 0 and is always greater than zero.
 +
                        <br> And the change curve of the concentration in 60min is shown below:
 +
                    </h4>
 +
                    <br>
 +
                    <br>
 +
                    <h4 style="text-align:center">Before transformation</h4>
 +
                    <br>
 +
                    <h4 style="text-align:center">After trransformation</h4>
 +
                    <h4>
 +
                        <br> We found that the random change of ATP concentration had a significant effect on the pathway after
 +
                        transformation, and the rate of DHAP synthesis was lower than that before transformation.
 +
                        <br> But when we adjust the standard deviation of the normal distribution random variable to 0.05, the
 +
                        result is shown below.
 +
                        <br> Thus, we found that even if ATP had a greater perturbation, the overall level was relatively high
 +
                        in 0-60 min compared to the previous standard deviation of 0.02. While the transformation of the
 +
                        metabolic pathway also reflects a more stable curve of change. At this point the concentration of
 +
                        DHAP is not significantly affected by changes in ATP concentration.
 +
                        <br> Thus, in actual production, we only need to keep the ATP concentration at a slightly higher level,
 +
                        not only to ensure the production of the target product, but to increase the stability of the system
 +
                        as well.
 +
                        <br>
 +
                    </h4>
 +
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
             <!-- /.row -->
+
             <!-- Blog Post Row -->
 +
 
  
            <!-- Projects Row -->
 
            <div class="row"  style="padding-top:50px">
 
                <div class="col-md-6 img-portfolio">
 
                    <a href="portfolio-item.html">
 
                        <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/e/ec/Pathway.png" alt="">
 
                    </a>
 
                    <h3 align="center">
 
                        <a href="portfolio-item.html">Pathway</a>
 
                    </h3>
 
                    <h4>We need to design two different metabolic pathways for two different chassis organisms and propose different
 
                        optimization schemes for them.We introduced the ceaS2 enzyme exogenously on the basis of the glycerol
 
                        metabolism of the two bacteria, so that it could produce the target product acrylic acid using the
 
                        intermediates G3P and DHAP.Besides having finished the construction of the pathways, we also reconstructed
 
                        and optimized the original metabolic pathway to increase the carbon flux rate of the designed pathway
 
                        and reduce the loss of bypass carbon flux.</h4>
 
                </div>
 
                <div class="col-md-6 img-portfolio">
 
                    <a href="portfolio-item.html">
 
                        <img class="img-responsive img-hover" src="https://static.igem.org/mediawiki/2017/6/67/Production2.png" alt="">
 
                    </a>
 
                    <h3 align="center">
 
                        <a href="portfolio-item.html" >Production</a>
 
                    </h3>
 
                    <h4>All of the previous processes are to build the engineering strains which have a high production of acrylic
 
                        acid that we need. In the subsequent fermentation, we also need to determine the best parameters
 
                        of the engineering strain.<br> Therefore, we selected the carbon source, Buffer, temperature, pH
 
                        and other conditions to optimize the cell production process.</h4>
 
                </div>
 
            </div>
 
 
         </div>
 
         </div>
        <!-- /.container -->
 
 
         <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 
         <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 
 
     </div>
 
     </div>
     <!-- /.batu -->
+
     </div>
 
+
 
+
 
+
  
    <!-- Script to Activate the Carousel -->
 
    <script>
 
        $('.carousel').carousel({
 
            interval: 5000 //changes the speed
 
        })
 
    </script>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 16:47, 30 October 2017

Introduction

This year our project is the introduction of acrylic synthetic routes in Escherichia coli or Saccharomyces cerevisiae to produce acrylic acid.

Primitive metabolic path map

We have a rational new design and transformation of the core enzyme ceaS2, at the same time, we also want to be optimized to improve the acrylic acid production in the metabolic flow.
We know that for Escherichia coli, the carbon flow rate of its original glycerol metabolic pathway may not be sufficient, and if the new glycerol metabolic pathway can be used to increase the carbon flow of DHAP or G3P, the substrate of the core enzyme ceaS2 can be increased Concentration to increase acrylic acid production.
Therefore, through the literature review, we found two enzymes which can achieve efficient conversion of glycerol to generate DHAP the same way.
In our new approach, Glycerol dehydrogenase (Gly DH) is capable of efficiently converting glycerol to 1,3-Dihydroxyacetone (DHA) and then phosphorylates DHA to DHAP via Dihydroxyacetone kinase (DAK).

New route map
Before the implementation of the formal experiment, we need to model it to analyze the impact of the introduction of new routes on the original metabolic flow, especially the two intermediates of DHAP or G3P. Specifically, we care about the following two issues:
1. Has the DHAP or G3P's carbon flow improved after the introduction of new metabolic pathways? Is it compared to the previous increase in production?
2. The introduction of new pathways after the entire metabolic pathway is stable and robust. How is it?
In order to answer these two questions, we established a carbon metabolic flow model.

The overall workflow is as follows:

Parameter estimation

There are many parameters to be determined in the model. Most of these kinetic parameters can be found in the literature or in the database, but at the same time, there are some kinetic parameters of the enzyme we are looking for. Its organic matter, or the temperature and ph of the enzyme are different. Therefore, we need to re-estimate this part of the parameters.

In the process data link, we cited the method using the data point weighting of University of Manchester in year 2016 . The weighting of the samples is as follows:
1. When the sample PH is the same, the sample is weighted by 4 .2 when they are close. 1 when they differ much.
2. When the sample temperature is the same, the pH is the same.
3. When the samples are from the same species , the weight of the sample is 4.When they are the non-identical species and are the prokaryotes,or the corresponding species mutated to the corresponding species, the weight is 2. When they are the non-identical species and are the eukaryotes, the weight is 1.
4. Try to delete the missing data. If there are some essential samples of the temperature and PH missing, then the corresponding weight is 2.

1.kernel density estimate 2. Gaussian mixed model.

The fourth point reflects our point of view of Bayesian. In the absence of prior knowledge of the case, we take as much as possible the weight of neutrality.
Based on the points above, we get a new parametric vector after weighting.In our model, we do the fitting of the probability density according to the two methods of the parameter vector.
1.kernel density estimate 2. Gaussian mixed model.

The basic workflow of parameter estimation:

The Gaussian mixture model can be approximated to any real probability distribution in theory. The EM algorithm is used to estimate the parameters required for the model. And we use the Gaussian mixture model to estimate the probability density of the possible distribution of parameters.
After making the probability distribution, we select Bin randomly, which meet the conditions of width = len / 10.And we select the most possible bin based on the CDF, and estimate the corresponding parameters when the bin reach average value.
Finally, we get the estimated parameter values, as well as the corresponding parameters of the original PDF. The specific form and parameter values are as follows:
The reaction path of the original pathway is Gly to Gly-3-p and then to DAHP
The original pathway belongs to the reaction of a single channel, and there is a random bibi reaction and an irreversible Mickey equation reaction. The reaction involves two enzymes paticipating - glpk and glpD. We assume that the reaction concentration of these two enzymes is 0.01 mM, assuming that the initial [Gly] concentration is 10 mM, the initial concentration of ATP 10 mM, Gly-3 The concentration of -p 0 mM and the concentration of DHAP 0 mM at the same time.

In this reaction, we make the following assumptions about our model:
1. The ATP of the E.coil system is given externally completely, assuming that the culture conditions given externally are sufficient and ATP maintains a stable constant.
2. Assume that the substrate involved in the reaction does not participate in other reactions.
In order to determine the yield of the target product, we chose to observe the efficiency of the DHAP yield estimation system in view of the lack of basic Deas2 enzyme data.

Changes of metabolic flux before passage


We can observe that the DHAP stops growing close to 50 minutes.

Then, we need to test the carbon pathway through the modified pathway, And add a metabolic pathway enzyme-catalyzed by GlyDH enzyme and DAK in the original path, while the need for NOX enzyme and CAT enzyme from the role of NAD + supplement, resulting in DHA, and finally Phosphorylation produces DHAP.
metabolic flow after the transformation of the reaction model. According to the actual situation of the reaction, we make the following assumptions:
1. In the reaction , due to the process of hydrogen peroxide to the production of O2, that is, the process of generating acceptor, is faster, we will regard the reaction of NOX enzyme NADH catalytic as an ordinary Michael's equation, rather than ordered sequence reaction.
2. Random pairs of sequence reactions and ordered sequence reaction equations are identical. So we substrate which is identified as the [A] substrate depending on the integrity of the data.

Metabolic pathways after transformation


We can see that the rate of DHAP is faster after changing the metabolic pathway, which means that the higher the output per unit time after being put in use, the sooner the reaction is done. Compared to the pre-improved pathway ,the reaction finishes roughly five minutes ahead.
Sensitive analysis
In the previous pathway study, we noted that the Kcat values of glpK and GlyDH enzymes are unknown (we do not have a large deviation in the absence of a sample expressed in E.coil).
The Kcat value of the reaction of propanal is the Kcat value of the reaction of Gly and GlyDH. It is also assumed that the K63 ratio of the two enzymes is 2: 1.
We often use Kcat / Km to describe the catalytic efficiency of different enzymes for the same substrate, and as a result of our experiments, GlyDH exhibited higher catalytic efficiency than glpK. Thus we assume that the GlyDH enzyme and the glpK enzyme satisfy the following relationship:
GlyDH enzyme activity and the Km value for gly and the Km value of the glpk enzyme to gly have been known in previous studies. Next we adjust the alpha coefficient to study the effect of different ratios on the overall metabolic flow.


KATA Sensitivity Test before Modification


KATA Sensitivity Test after Modification


We show the highest ratio (1000) and the lowest ratio (0.001) in yellow and blue lines respectively. The pre-transformation pathway is most sensitive to the change of Kcat in glpK enzyme, and the metabolic pathway of the target substrate is transformed with the change of α Rate is always higher than the pre-transformation pathway, even when the glpK Kcat / Km value is 100 times the GlyDH, the reason may be DAK enzyme catalytic efficiency’s higher than glpD.
As we can see, the previous reaction is dependent on ATP, and in the previous hypothesis, we make ATP stable in the constant .In order to analyze the ATP concentration changes on the impact of glycerol conversion, we add a Standard deviation of 0.05, mean of the normal distribution of variables to disturb the timing of the concentration of ATP in ODE.
For the sake of us to observe the significant results, we assume that the initial concentration of ATP is 0 and is always greater than zero.
And the change curve of the concentration in 60min is shown below:



Before transformation


After trransformation


We found that the random change of ATP concentration had a significant effect on the pathway after transformation, and the rate of DHAP synthesis was lower than that before transformation.
But when we adjust the standard deviation of the normal distribution random variable to 0.05, the result is shown below.
Thus, we found that even if ATP had a greater perturbation, the overall level was relatively high in 0-60 min compared to the previous standard deviation of 0.02. While the transformation of the metabolic pathway also reflects a more stable curve of change. At this point the concentration of DHAP is not significantly affected by changes in ATP concentration.
Thus, in actual production, we only need to keep the ATP concentration at a slightly higher level, not only to ensure the production of the target product, but to increase the stability of the system as well.