Difference between revisions of "Team:UCopenhagen/Safety"

 
(74 intermediate revisions by 2 users not shown)
Line 6: Line 6:
  
 
<!-- Header -->
 
<!-- Header -->
     <a name="project-page"></a>
+
     <a name="landsholdet"></a>
 
     <div class="intro-header4">
 
     <div class="intro-header4">
 
         <div class="container">
 
         <div class="container">
Line 14: Line 14:
 
                     <div class="intro-message2">
 
                     <div class="intro-message2">
 
<h3></h3>
 
<h3></h3>
<h3></h3>
+
                         <h1>S A F E T Y</h1>
<h3></h3>
+
<h3></h3>
+
<h3></h3>
+
                         <h1>SAFETY</h1>
+
                        <h3></h3>
+
           
+
 
                     </div>
 
                     </div>
 
                 </div>
 
                 </div>
Line 27: Line 21:
 
         </div>
 
         </div>
 
         <!-- /.container -->
 
         <!-- /.container -->
 +
 +
 +
<div class="content-section-a" id="top">
 +
    <div class="container">
 +
 +
        <div class="row">
 +
            <div class="col-lg-5 col-sm-6">
 +
                <hr class="section-heading-spacer">
 +
                <div class="clearfix"></div>
 +
                    <h2 class="section-heading">Introduction</h2>
 +
                    <p class="lead"> Human, animal and environmental safety considerations are prerequisite to commencing any legitimate science project. Working with genetically modified organisms involves advanced regulation owing to its political potency. The relatively recent emergence of synthetic biology and its revolutionary potential earns even more public scrutiny. Vigilant enforcement of safety best practices is critical to preventing avoidable public misconceptions.
 +
<br><br>
 +
 +
Incell has received extensive safety training from the Department of Plant and Environmental Sciences at the University of Copenhagen. From the very beginning we integrated safety into the concept creation and experimental design. All decisions have been made in accordance with Danish, EU and WHO safety legislation <a href="" title="Retsinformation, 2009: BEK nr 225" style="color: white">(Retsinformation, 2009).</a></p>
 +
 +
          </div>
 +
                <div class="col-lg-5 col-lg-offset-2 col-sm-6">
 +
<figure>
 +
<br><br>
 +
<br><br>
 +
                    <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/0/0a/Labsafetydab.jpg" alt="" width="250" height="200">
 +
 +
<figcaption><b>Image 1 </b>Picture of Julius dabbing at lab safety board.</figcaption>
 +
</figure>
 +
                </div>
 +
        </div>
  
 
     </div>
 
     </div>
     <!-- /.intro-header -->
+
     <!-- /.container -->
 +
</div>
  
  
<div class="content-section-a">
+
<div class="content-section-b" id="top">
<div class="container">
+
    <div class="container">
            <div class="row">
+
                <div class="col-lg-5 col-sm-6">
+
                    <hr class="section-heading-spacer">
+
                    <div class="clearfix"></div>
+
                    <h2 class="section-heading">Introduction </h2>
+
                    <p class="lead">Our team believes that establishing a stable platform for scientists to create naïve orthogonal living compartments, would allow for an unpredictable advancement in the field of synthetic biology. Our project will not attempt to create an endosymbiont, but instead investigate the mechanisms in free-living cells in a bottom-up approach to endosymbiosis. 
+
The endosymbiotic theory, formulated in the early years of the previous century, outlines that the organelles of the eukaryotic cell, such as the mitochondria, have their origin in free-living prokaryotes engulfed by bigger cells. These incorporated cells then co-evolved with their host conferring to it novel emergent properties which ultimately helped fuel the development of more complex multicellular biological systems such as plants and animals (Archibald, 2015). </p>
+
  
<br>
+
        <div class="row">
 +
            <div class="col-lg-5 col-sm-6">
 +
                <hr class="section-heading-spacer">
 +
                <div class="clearfix"></div>
 +
                    <h2 class="section-heading">Laboratory work</h2>
 +
                    <p class="lead"> All team members have completed laboratory safety training and are acquainted with regulations relevant to our work.
  
<p>We have identified three mechanisms we believe to be mandatory for the development of a stable endosymbiotic relationship, which we will be trying to replicate in free-living cells. First of all, in order for the relationship to be stable, the two organisms must be mutually dependent on each other; there must be a mutually beneficial interaction between host and symbiont. Secondly, there has to be some sort of control and synchronization of symbiont replication. If the symbiont were to be replicating freely we could end up with way too many or not enough symbionts in the host.  Finally, a common feature of the endosymbiotic organelles we have looked at, is the transfer of genes from the symbiont to the host. Because of this transfer, the gene and protein expression is taking place in the nucleus and the proteins and metabolites are transported to the organelle. This import of proteins is interesting not just for understanding endosymbiosis, but also for the potential applications in synthetic biology.</p>
+
<br><br>We are confident in our ability to prevent and respond to safety risks and adhere to all hygiene, clothing and behaviour requirements specific to the context of our work.
 +
  <br><br>
 +
Waste disposal has been in accordance with all applicable regulation and legislation. Liquid GMO waste is autoclaved prior to disposal and plastic waste placed in appropriate bags labelled ‘Clinical risk waste’ before handling by the university.
 +
<br><br>
  
<br>
+
Our model organisms and synthetic BioBricks pose zero risk to human health, fall within Risk Group 1 and do not require additional safety measures.
 +
<br><br>
  
<p>Based on these considerations, we decided to work on three distinct, but intertwined, projects pertaining to endosymbiosis, namely Interdependence, Number Control, and Protein import. We believe that by combining these three projects, a key step towards the understanding of endosymbiosis and its employment in synthetic biology will be obtained. </p>
+
A complete and detailed account of our safety considerations and protocols can be found through the links below:
                </div>
+
</p>
 +
            </div>
 
                 <div class="col-lg-5 col-lg-offset-2 col-sm-6">
 
                 <div class="col-lg-5 col-lg-offset-2 col-sm-6">
                     <img class="img-responsive" src="img/national-logo.jpg" alt="">
+
<figure>
 +
<br><br>
 +
<br><br>
 +
                     <img class="img-responsive1" src="https://static.igem.org/mediawiki/2017/4/49/Labwaste.jpg" alt="">
 +
 
 +
<figcaption><b>Image 2 </b>Disposal of plastic waste handled by university.</figcaption>
 +
</figure>
 
                 </div>
 
                 </div>
            </div>
 
 
 
         </div>
 
         </div>
        <!-- /.container -->
 
  
 
     </div>
 
     </div>
 +
    <!-- /.container -->
 
</div>
 
</div>
       
+
      
     <div class="content-section-b">
+
<a  name="socialmedia"></a>
 
         <div class="container">
 
         <div class="container">
            <div class="row">
+
          <div class="row">
                 <div class="col-lg-5 col-lg-offset-1 col-sm-push-6  col-sm-6">
+
                 <div class="col-lg-5">
                     <hr class="section-heading-spacer">
+
                     <h2>Find Incell here:</h2>
                    <div class="clearfix"></div>
+
                </div>
                    <h2 class="section-heading">Applications and Implications</h2>
+
                <div class="col-lg-7">
                    <<p>By understanding the basic principles behind the creation of stable endosymbiotic events we hope that in the future it will be possible to use artificial endosymbiosis as a new technology in synthetic biology, and we believe that value can be created in the foundational track of the iGEM competition. History has shown that great scientific advances has followed the implementation of new revolutionary technologies (Gershon 2003). </p>
+
 
<br>
 
<br>
<p>We envision that artificial endosymbiosis could be applied in a broad range of fields, including agriculture, medicine and production of valuable compounds. A deeper understanding of the relationships intertwining endosymbionts and their hosts could unravel new knowledge applicable for the treatment of mitochondrial diseases, while a living compartment able to fixate nitrogen from the air could decrease the fertilizer use in agricultural production. </p>
 
<br>
 
<p>However, the applications are only limited by the imagination of future users. Indeed, the game-changing role of endosymbiosis has not gone unseen to the eyes of the modern bioengineers, who predict that the establishment of a novel interaction has the potential to radically alter the host cell physiology without directly affecting the host genome (Scientific America Vol 105 pp. 36-45).</p>
 
<br>
 
<p>Before the potential application of artificial endosymbiosis, there are many things to consider. While the current regulations regarding GMO limits what is possible to apply in agriculture and medicine, regulations regarding synthetically modified organisms (SMOs) have not yet been systematically put into place. How will a new field of SMO be regulated, and how will it influence possible applications of artificial endosymbiosis?</p>
 
<br>
 
<p>In addition to our scientific investigation we are enthused to trigger debate about synthetic biology. We intend to podcast intriguing conversations with experts, thereby hoping to reach the general public and impel the discussion about the ethics and future prospects in combining biology and engineering.</p>
 
                     
 
                    </div>
 
                    <div class="col-lg-6 col-sm-pull-6  col-sm-6">
 
                   
 
                        <img class="img-responsive2" src="img/Lacrosse2.jpg" alt="">
 
                    </div>
 
                </div>
 
                </div>
 
            </div>
 
</div>
 
 
 
<a  name="socialmeida"></a>
 
    <div class="banner">
 
 
        <div class="container">
 
 
            <div class="row">
 
                <div class="col-lg-6">
 
                    <h2>Find inCell here:</h2>
 
                </div>
 
                <div class="col-lg-6">
 
 
                     <ul class="list-inline banner-social-buttons">
 
                     <ul class="list-inline banner-social-buttons">
 
                         <li>
 
                         <li>
Line 111: Line 110:
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
+
</div>
 
         </div>
 
         </div>
 
         <!-- /.container -->
 
         <!-- /.container -->
 +
    </div>
 +
    <!-- /.intro-header -->
  
 
     </div>
 
     </div>
Line 137: Line 138:
 
                     <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
 
                     <!-- Hidden li included to remove active class from about link when scrolled up past about section -->
 
                     <li>
 
                     <li>
                         <a class="page-scroll" href="https://2017.igem.org/Team:UCopenhagen/Model">Previous</a>
+
                         <a class="page-scroll" href="https://2017.igem.org/Team:UCopenhagen">Previous</a>
 
                     </li>
 
                     </li>
 
                     <li>
 
                     <li>
                         <a class="page-scroll" href="https://2017.igem.org/Team:UCopenhagen/Notebook">Next</a>
+
                         <a class="page-scroll" href= "https://2017.igem.org/Team:UCopenhagen/Interdependency">Next</a>
 
                     </li>
 
                     </li>
 
                 </ul>
 
                 </ul>

Latest revision as of 10:10, 31 October 2017

S A F E T Y


Introduction

Human, animal and environmental safety considerations are prerequisite to commencing any legitimate science project. Working with genetically modified organisms involves advanced regulation owing to its political potency. The relatively recent emergence of synthetic biology and its revolutionary potential earns even more public scrutiny. Vigilant enforcement of safety best practices is critical to preventing avoidable public misconceptions.

Incell has received extensive safety training from the Department of Plant and Environmental Sciences at the University of Copenhagen. From the very beginning we integrated safety into the concept creation and experimental design. All decisions have been made in accordance with Danish, EU and WHO safety legislation (Retsinformation, 2009).





Image 1 Picture of Julius dabbing at lab safety board.

Laboratory work

All team members have completed laboratory safety training and are acquainted with regulations relevant to our work.

We are confident in our ability to prevent and respond to safety risks and adhere to all hygiene, clothing and behaviour requirements specific to the context of our work.

Waste disposal has been in accordance with all applicable regulation and legislation. Liquid GMO waste is autoclaved prior to disposal and plastic waste placed in appropriate bags labelled ‘Clinical risk waste’ before handling by the university.

Our model organisms and synthetic BioBricks pose zero risk to human health, fall within Risk Group 1 and do not require additional safety measures.

A complete and detailed account of our safety considerations and protocols can be found through the links below:





Image 2 Disposal of plastic waste handled by university.

Find Incell here: