|
|
Line 167: |
Line 167: |
| | | |
| <article> | | <article> |
− | <br>Based on Sismour  <i>et al.</i> (Sismour and Benner, 2005) and Johnson <i>et al.</i> (Johnson et al., 2004), we designed a novel protocol for PCR with the unnatural base pair isoG and isoC<sup>m</sup>. We first started to reproduce positive results with Titanium Taq (TiTaq) polymerase. While Johnson et al. presented an efficiency of 96 % ± 3 %, Sismour <i>et al.</i> showed a reduced fidelity using the klenow fragment of TiTaq polymerase. Without thymidine analogues, the fidelity per round PCR decreases rapidly to less than 60 % after 20 rounds of PCR.
| + | <br>Based on Sismour <i>et al.</i> (Sismour and Benner, 2005) and Johnson <i>et al.</i> (Johnson et al., 2004), we designed a novel protocol for PCR with the unnatural base pair isoG and isoC<sup>m</sup>. We first started to reproduce positive results with Titanium Taq (TiTaq) polymerase. While Johnson et al. presented an efficiency of 96 % ± 3 %, Sismour <i>et al.</i> showed a reduced fidelity using the klenow fragment of TiTaq polymerase. Without thymidine analogues, the fidelity per round PCR decreases rapidly to less than 60 % after 20 rounds of PCR. |
| </br> | | </br> |
| <br>For endpoint determination, we performed PCR reactions with 30 rounds to find out if there is any polymerase activity with template DNA containing the unnatural bases isoG and isoC<sup>m</sup>. | | <br>For endpoint determination, we performed PCR reactions with 30 rounds to find out if there is any polymerase activity with template DNA containing the unnatural bases isoG and isoC<sup>m</sup>. |
| </br> | | </br> |
− | <br> The PCR templates were prepared by ligating each of the annealed 80 bp M.A.X targets mutA, mutT, mutG and mutC into pSB1C3_RuBisCo . For this purpose, the plasmid backbone was linearized by digestion with <i>Bmt</i>I and <i>Xba</i>I. For complementary sticky ends, the annealed oligos were digested with <i>Bmt</i>I and <i>Spe</i>I. After ligation, subsequent digestion with <i>Xba</i>I, lambda exonuclease and exonuclease I was performed to reduce the amount of unintended DNA template. | + | <br> The PCR templates were prepared by ligating each of the annealed 80 bp M.A.X targets mutA, mutT, mutG and mutC into pSB1C3_RuBisCo <a href=" http://parts.igem.org/Part:BBa_K1465202"> (BBa_K1465202) </a>. For this purpose, the plasmid backbone was linearized by digestion with <i>Bmt</i>I and <i>Xba</i>I. For complementary sticky ends, the annealed oligos were digested with <i>Bmt</i>I and <i>Spe</i>I. After ligation, subsequent digestion with <i>Xba</i>I, lambda exonuclease and exonuclease I was performed to reduce the amount of unintended DNA template. |
| </br> | | </br> |
| <!-- Grosses zentriertes Bild --> | | <!-- Grosses zentriertes Bild --> |
Line 178: |
Line 178: |
| <p class="figure subtitle"><b>Figure 6: </b> Plasmidcard of pSB1C3_Rubisco which is used as backbone for M.A.X targets and UBP_target during PCR.</p> | | <p class="figure subtitle"><b>Figure 6: </b> Plasmidcard of pSB1C3_Rubisco which is used as backbone for M.A.X targets and UBP_target during PCR.</p> |
| </div> | | </div> |
− | <br>To increase the possibility of the insertion of the unnatural bases, we used 100 µM dNTPs and 200 µM isoG and 200 µM isoC<sup>m</sup> for each reaction. After variations of template concentrations from 1 ng µL<sup>-1</sup> to 50 ng µL<sup>-1</sup>, the best concentrations to acquire high-quality bands were 1 ng µL<sup>-1</sup> for the M.A.X targets and 25 ng µL<sup>-1</sup> for the UBP_target template. | + | <br>To increase the possibility of the insertion of the unnatural bases, we used 100 µM dNTPs and 200 µM isoG and 200 µM isoC<sup>m</sup> for each reaction. After variations of template concentrations from 1 ng µL<sup>-1</sup> to 50 ng µL<sup>-1</sup>, the best concentrations to acquire high-quality bands were 1 ng µL<sup>-1</sup> for the M.A.X targets and 25 ng µL<sup>-1</sup> for the UBP_target template. |
| </br> | | </br> |
| <!-- Mittleres zentriertes Bild --> | | <!-- Mittleres zentriertes Bild --> |
Line 185: |
Line 185: |
| <p class="figure subtitle"><b>Figure 7: </b> PCR with Titanium Taq polymerase of pSB1C3_RuBisCo with the inserts mutA, mutT, mutG, mutC (5 ng µL<sup>-1</sup>) and UBP_target (25 ng µL<sup>-1</sup>) (FLTR). The expected fragment is 351 bp long. </p> | | <p class="figure subtitle"><b>Figure 7: </b> PCR with Titanium Taq polymerase of pSB1C3_RuBisCo with the inserts mutA, mutT, mutG, mutC (5 ng µL<sup>-1</sup>) and UBP_target (25 ng µL<sup>-1</sup>) (FLTR). The expected fragment is 351 bp long. </p> |
| </div> | | </div> |
− | <br>To quantify the efficiency of the incorporation of isoG and isoC<sup>m</sup>, all PCR products were tested/restricted with the M.A.X system. In order to achieve complete digestion, different incubation times from 1 h to 15 h were tested. The best results with <i>Bsa</i>I and <i>Mnl</i>I were achieved with an incubation of 15 h overnight. For the less stable enzymes <i>Eci</i>I and <i>Sap</i>I, a 2 h digestion with an addition of further enzyme after 1 h turned out to be optimal. Nevertheless, <i>Eci</i>I and <i>Sap</i>I could not digest the complete sample even if the concentrations are lowered. Therefore we expected undigested bands in the M.A.X targets mutA and mutG for the whole experiment. | + | <br>To quantify the efficiency of the incorporation of isoG and isoC<sup>m</sup>, all PCR products were tested/restricted with the M.A.X system. In order to achieve complete digestion, different incubation times from 1 h to 15 h were tested. The best results with <i>Bsa</i>I and <i>Mnl</i>I were achieved with an incubation of 15 h overnight. For the less stable enzymes <i>Eci</i>I and <i>Sap</i>I, a 2 h digestion with an addition of further enzyme after 1 h turned out to be optimal. Nevertheless, <i>Eci</i>I and <i>Sap</i>I could not digest the complete sample even if the concentrations are lowered. Therefore we expected undigested bands in the M.A.X targets mutA and mutG for the whole experiment. |
| </br> | | </br> |
| <br>After the first successful PCR, we tested if the presence of isoG and isoC<sup>m</sup> has any influence on the efficiency of the polymerase. So we added both unnatural bases to every PCR reaction with the M.A.X targets as template to see if the intensity of the bands decreases. | | <br>After the first successful PCR, we tested if the presence of isoG and isoC<sup>m</sup> has any influence on the efficiency of the polymerase. So we added both unnatural bases to every PCR reaction with the M.A.X targets as template to see if the intensity of the bands decreases. |
Line 194: |
Line 194: |
| <p class="figure subtitle"><b>Figure 8: </b>Digested PCR with Titanium Taq polymerase of pSB1C3_RuBisCo with all M.A.X targets and the UBP_target insert with isoG and isoCm in each reaction of the M.A.X targets and no UBPs in the reactions with the UBP_target insert. There seems to be no efficiency difference to reactions without the unnatural base pairs. All samples are digested to the same fragment size so no UBPs are incorporated.</p> | | <p class="figure subtitle"><b>Figure 8: </b>Digested PCR with Titanium Taq polymerase of pSB1C3_RuBisCo with all M.A.X targets and the UBP_target insert with isoG and isoCm in each reaction of the M.A.X targets and no UBPs in the reactions with the UBP_target insert. There seems to be no efficiency difference to reactions without the unnatural base pairs. All samples are digested to the same fragment size so no UBPs are incorporated.</p> |
| </div> | | </div> |
− | <br>In comparison to fig.7, the intensity is the same. In contrast, we did not add UBPs to the reaction with the UBP_target fragment as template. The restriction digest shows the same bands for every sample so the presence of UBPs does not influence the polymerase activity. | + | <br>Compared to fig. 7, the intensity is the same. In contrast, we did not add UBPs to the reaction with the UBP_target fragment as template. The restriction digest shows the same bands for every sample so the presence of UBPs does not influence the polymerase activity. |
| </br> | | </br> |
| <br>The next step was to test if different polymerases can incorporate the unnatural bases. Therefore we tested 7 other polymerases from different manufacturers. | | <br>The next step was to test if different polymerases can incorporate the unnatural bases. Therefore we tested 7 other polymerases from different manufacturers. |
Line 228: |
Line 228: |
| <p class="figure subtitle"><b>Figure 13: </b> PCR with BioMaster-HS Taq PCR polymerase of pSB1C3_RuBisCo with of pSB1C3_RuBisCo with the inserts mutA, mutT, mutG, mutC (5 ng µL<sup>-1</sup>) and UBP_target (25 ng µL<sup>-1</sup>) after the restriction digest with <i>Eci</i>I (mutA) and <i>Sap</i>I (mutG) for 2 h and <i>Bsa</i>I (muttT) and <i>Mnl</i>I (mutC) for 15 h.</p> | | <p class="figure subtitle"><b>Figure 13: </b> PCR with BioMaster-HS Taq PCR polymerase of pSB1C3_RuBisCo with of pSB1C3_RuBisCo with the inserts mutA, mutT, mutG, mutC (5 ng µL<sup>-1</sup>) and UBP_target (25 ng µL<sup>-1</sup>) after the restriction digest with <i>Eci</i>I (mutA) and <i>Sap</i>I (mutG) for 2 h and <i>Bsa</i>I (muttT) and <i>Mnl</i>I (mutC) for 15 h.</p> |
| </div> | | </div> |
− | <br>FirePol DNA polymerase (Solis Biodyne) had genetic modifications, such that it is stable at room temperature for 1 month. It has a 5’-3’ polymerization-dependent exonuclease replacement, but lacks 3’-5’ exonuclease activity. | + | <br>FirePol DNA polymerase (Solis Biodyne) had genetic modifications, such that it is stable at room temperature for 1 month. It has a 5’-3’ polymerization-dependent exonuclease replacement, but lacks 3’-5’ exonuclease activity. |
| </br> | | </br> |
| <!-- Mittleres zentriertes Bild --> | | <!-- Mittleres zentriertes Bild --> |
Line 256: |
Line 256: |
| </br> | | </br> |
| | | |
− | </article>
| + | |
| + | |
| + | </article> |
| + | |
| + | <h3>References</h3> |
| + | |
| + | <article> |
| + | <br><b>Johnson, S.C., Sherrill, C.B., Marshall, D.J., Moser, M.J., and Prudent, J.R.</b> (2004). A third base pair for the polymerase chain reaction: inserting isoC and isoG. ´Nucleic Acids Res. <b>32</b>: 1937–41.</br> |
| + | <br><b>Sismour, A.M. and Benner, S.A. </b>(2005). The use of thymidine analogs to improve the replication of an extra DNA base pair: a synthetic biological system. Nucleic Acids Res. <b>33</b>: 5640–6.</br> |
| + | </article> |
| </div> | | </div> |
| </div> | | </div> |