Based on Sismour et al. (Sismour and Benner, 2005) and Johnson et al. (Johnson et al., 2004), we designed a novel protocol for PCR with the unnatural base pair isoG and isoCm. We first started to reproduce positive results with Titanium Taq (TiTaq) polymerase. While Johnson et al. presented an efficiency of 96 % ± 3 %, Sismour et al. showed a reduced fidelity using the klenow fragment of TiTaq polymerase. Without thymidine analogues, the fidelity per round PCR decreases rapidly to less than 60 % after 20 rounds of PCR.
For endpoint determination, we performed PCR reactions with 30 rounds to find out if there is any polymerase activity with template DNA containing the unnatural bases isoG and isoCm.
The PCR templates were prepared by ligating each of the annealed 80 bp M.A.X targets mutA, mutT, mutG and mutC into pSB1C3_RuBisCo (BBa_K1465202) . For this purpose, the plasmid backbone was linearized by digestion with BmtI and XbaI. For complementary sticky ends, the annealed oligos were digested with BmtI and SpeI. After ligation, subsequent digestion with XbaI, lambda exonuclease and exonuclease I was performed to reduce the amount of unintended DNA template.
To increase the possibility of the insertion of the unnatural bases, we used 100 µM dNTPs and 200 µM isoG and 200 µM isoCm for each reaction. After variations of template concentrations from 1 ng µL-1 to 50 ng µL-1, the best concentrations to acquire high-quality bands were 1 ng µL-1 for the M.A.X targets and 25 ng µL-1 for the UBP_target template.
To quantify the efficiency of the incorporation of isoG and isoCm, all PCR products were tested/restricted with the M.A.X system. In order to achieve complete digestion, different incubation times from 1 h to 15 h were tested. The best results with BsaI and MnlI were achieved with an incubation of 15 h overnight. For the less stable enzymes EciI and SapI, a 2 h digestion with an addition of further enzyme after 1 h turned out to be optimal. Nevertheless, EciI and SapI could not digest the complete sample even if the concentrations are lowered. Therefore we expected undigested bands in the M.A.X targets mutA and mutG for the whole experiment.
After the first successful PCR, we tested if the presence of isoG and isoCm has any influence on the efficiency of the polymerase. So we added both unnatural bases to every PCR reaction with the M.A.X targets as template to see if the intensity of the bands decreases.
Compared to fig. 7, the intensity is the same. In contrast, we did not add UBPs to the reaction with the UBP_target fragment as template. The restriction digest shows the same bands for every sample so the presence of UBPs does not influence the polymerase activity.
The next step was to test if different polymerases can incorporate the unnatural bases. Therefore we tested 7 other polymerases from different manufacturers.
Titanium Taq Polymerase (Clontech) lacks 5’-exonuclease activity of wild-type DNA.
GoTaq G2 polymerase (Promega) with 5’-3’ exonuclease activity.
Allin HiFi DNA Polymerase (highQu) is derived from Pfu polymerase with several mutations and proof reading function.
innuDRY polymerase is a specific hot-start Taq DNA polymerase.
BioMaster-HS Taq PCR polymerase (Biolabmix) is also a hot-start Taq DNA polymerase.
FirePol DNA polymerase (Solis Biodyne) had genetic modifications, such that it is stable at room temperature for 1 month. It has a 5’-3’ polymerization-dependent exonuclease replacement, but lacks 3’-5’ exonuclease activity.
The Phusion DNA polymerase (NEB) is a derived Pyrococcus enzyme fused with a processivity-enhancing domain. It possesses 5’-3’ polymerase activity and 3’-5’ exonuclease activity so blunt-ended products are generated.
The Q5 DNA polymerase (NEB) is a polymerase that is fused to the processivity-enhancing Sso7d DNA binding domain with an error rate ~280-fold lower than of Taq DNA polymerase.
We always used the same template concentration and the same primers to ensure the comparability between the DNA polymerases. As can be seen in the figures above, all Taq based polymerases are able to incorporate the unnatural base pair in the DNA. The best results were apparently achieved with the Go Taq G2 DNA polymerase. All lanes with the UBPs show clear bands and no mutations to T or A. The M.A.X restriction digest showed there are some mutations to C. The PCR product of the UBP_target fragment was digested because of the second MnlI restriction site, but one can see a difference between the M.A.X target mutC and the UBP_target PCR product. The digested PCR products of the BioMaster-HS Taq PCR polymerase and the Allin HiFi DNA Polymerase show more mutations to A than the other polymerases. But also the TiTaq polymerase seems to miss incorporate the A instead of isoG. Moreover, the Phusion DNA polymerase proceeds to miss the incorporated G while the Q5 DNA polymerase does not show any bands containing the UBPs. Both polymerases have a proofreading function in contrast to the other polymerases.
In the final analysis, the faster and the stronger the poof reading function of a polymerase is, the worse is the incorporation of the UBPs.
The M.A.X system seems to be a good method for the first review of the efficiency of the polymerases. One can see if there is any incorporation of UBPs, so that sequencing is worthwhile. Minor deviations are not detectable by gel electrophoresis. It is also difficult to make a clear statement about the proportion of correctly or incorrectly incorporated unnatural bases, because the digested fragments seem to be less intensive than intact sequences.