Evan pepper (Talk | contribs) |
Evan pepper (Talk | contribs) |
||
Line 205: | Line 205: | ||
font-family: 'objektiv-mk1'; | font-family: 'objektiv-mk1'; | ||
padding-bottom: 30px; | padding-bottom: 30px; | ||
− | padding-top: | + | padding-top: 30px; |
} | } | ||
Line 704: | Line 704: | ||
</div> | </div> | ||
+ | <br> | ||
<br> | <br> | ||
Revision as of 22:28, 31 October 2017
RESULTS
Our project focuses on biosynthetically producing the molecules vitamin B12 and acetaminophen in Synechococcus elongatus PCC 7942. The secondary focuses of our project was geared towards analyzing the growth of S. elongatus PCC 7942 in seawater, creating a detection method for vitamin B12 via a riboswitch/reporter system, and a proof of concept for the production of acetaminophen in E. coli.
I. Biosynthesis
1a. Plasmid construction of DWB1, DWB2, DWB3, and DWB4
Plasmids DWB1, DWB2, DWB3 and DWB4 were designed for gene integration into the chromosomal genome of S. elongatus PCC 7942. The plasmid AM2991 was constructed for homologous recombination into defined Neutral Integration Site 1 (NSI) in S. elongatus PCC 7492. The genes ssuE and 4ABH were assembled into a AM2991 plasmid backbone constructing DWB1 and DWB2, respectively. The plasmid AM1573 was used for recombination into Neutral Integration Site 2 (NSII). The genes bluB and nhoA were assembled into pAM1573 forming DWB3 and DWB4, respectively. All plasmids were successfully constructed and confirmed through sanger sequencing.
1b. Successful integration of ssuE into S. elongatus PCC 7942
Integration of the ssuE gene into S. elongatus PCC 7942 genome was successful. Cells were inoculated with DWB1 plasmid and transformed in the dark, overnight. Transformed cells were selected for growth on BG-11 and streptomycin plates. Colonies were grown for 7-10 days and homologous recombination of the entire plasmid cassette into the genome was assayed through PCR of neutral site one.
Due to multiple copies of the chromosomal genome in the organism, S. elongatus PCC 7942 was patched onto antibiotic plates after colony picks, with the purpose of isolating cells that contain solely integrated gene constructs. After four rounds of patching a single cell line, specific amplification of a strand larger than that of the original genome indicates successful isolation of ssuE integrated cells.
II. S. elongatus grown in local sea water, SCCB-1
S. elongatus PCC 7942 cultures are commercially grown in BG-11 media. However, seawater from a local beach was obtained, SCCB-1, to deduce whether locally sourced bodies of water were sufficient for the growth of S. elongatus. SCCB-1 was filtered, autoclaved and supplemented with a source of Nitrogen in the form of NaNO2.
To show the difference in growth with each media, SCCB-1 and BG-11(N+) were inoculated with S. elongatus PCC 7942 and cell density was measured daily for 10 circadian days. Cultures grown in SCCB-1 exhibit similar growth patterns to that of BG-11(N+) confirming the potential of locally sourcing a media for cyanobacterial growth.
III. Riboswitch
A detection mechanism for vitamin B12, specifically the molecule cobalamin, would allow for an instantaneous assay of its presence. The biobrick part, BBa_K1913011, from the Wageningen 2016 iGEM team was modified and tested for its affinity to 5,6-DMB-cobalamin (DMB B12) or adenine-cobalamin (B12 analogs). The part consist of a riboswitch, btub, that binds specifically to cobalamin, sequestering the ribosomal binding site (RBS) upstream of the TetR gene, thereby hindering the expression of the repressor. In the absence of cobalamin, the TetR gene is constitutively expressed producing the Tet repressor which trans-regulates the Tet operator, TetO. The operator was designed upstream of the reporter gene, mRFP. Therefore, detection of the reporter RFP implies the presence of vitamin B12.
Plasmid EN15 was constructed through Gibson Assembly. Gene block fragments consisting of the riboswitch/reporter parts, NSII homologous sequences, and an ampicillin resistance were ligated onto an E. coli specific sequence, pBR322. The novel plasmid was designed for recombination into Neutral Integration Site 2 (NSII) within the chromosomal genome of S. elongatus PCC 7942. The riboswitch system was modified for expression within S. elongatus PCC 7942. A light induced psbAI promoter, documented to be constitutively expressed in cyanobacteria such as S. elongatus PCC 7942, was placed upstream of the biobrick parts, producing two separate mRNA strands.
The riboswitch system was modified to be expressed in E. coli as a proof that all parts work as expected. E. coli produces vitamin B12 analogs which bind onto the riboswitch and express the mRFP reporter gene. Once the assembly of the plasmid EN15 was confirmed, it was then transformed into E. coli which further validated that all parts worked accordingly. Plasmid EN15 was confirmed via sanger sequencing.