Difference between revisions of "Team:SSTi-SZGD/Description"

 
(27 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
{{SSTi-SZGD}}
 
{{SSTi-SZGD}}
<html>
+
<html lang="en">
 
+
<head>
 
+
<meta charset="UTF-8">
 
+
<meta name="viewport" content="width=device-width,initial-scale=1,minimum-scale=1,maximum-scale=1,user-scalable=no" />
<div class="column full_size" id="a">
+
<meta name="Keywords" content="product,degradation,soil,pesticide,residues"/>
<h1>Description</h1>
+
<meta name="Description" content="A product for the degradation of soil pesticide residues"/>
 
+
<meta name="author" content="Lucky"/>
<p>Tell us about your project, describe what moves you and why this is something important for your team.</p>
+
<meta name="copyright" content="IGEM Team:SSTi-SZGD"/>
 
+
<meta name="revised" content="Lucky Yang,10/25/17"/>
 
+
<title>SSTi-SZGD---Description</title>
<h5>What should this page contain?</h5>
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:SSTi-SZGD/css/animation?action=raw&ctype=text/css"/>
<ul>
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:SSTi-SZGD/css/hover?action=raw&ctype=text/css"/>
<li> A clear and concise description of your project.</li>
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:SSTi-SZGD/css/header?action=raw&ctype=text/css"/>
<li>A detailed explanation of why your team chose to work on this particular project.</li>
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:SSTi-SZGD/css/footer?action=raw&ctype=text/css"/>
<li>References and sources to document your research.</li>
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Team:SSTi-SZGD/css/Description?action=raw&ctype=text/css"/>
<li>Use illustrations and other visual resources to explain your project.</li>
+
<script src="https://2017.igem.org/Team:SSTi-SZGD/js/jquery?action=raw&ctype=text/javascript" type="text/javascript" charset="utf-8"></script>
</ul>
+
<script src="https://2017.igem.org/Team:SSTi-SZGD/js/header?action=raw&ctype=text/javascript" type="text/javascript" charset="utf-8"></script>
 
+
<script src="https://2017.igem.org/Team:SSTi-SZGD/js/footer?action=raw&ctype=text/javascript" type="text/javascript" charset="utf-8"></script>
 
+
<script src="https://2017.igem.org/Team:SSTi-SZGD/js/Description?action=raw&ctype=text/javascript" type="text/javascript" charset="utf-8"></script>
</div>
+
</head>
 
+
<body>
<div class="column full_size" >
+
 
+
<h5>Advice on writing your Project Description</h5>
+
 
+
<!--SSTi-SZGD-->
<p>
+
<div class="SSTi-SZGD" onselectstart="return false;" unselectable="on" style=" -moz-user-select: none;">
We encourage you to put up a lot of information and content on your wiki, but we also encourage you to include summaries as much as possible. If you think of the sections in your project description as the sections in a publication, you should try to be consist, accurate and unambiguous in your achievements.  
+
</p>
+
<div class="header a-fadeinT">
 
+
<p>
+
<div class="logo">
Judges like to read your wiki and know exactly what you have achieved. This is how you should think about these sections; from the point of view of the judge evaluating you at the end of the year.
+
</p>
+
<img src="https://static.igem.org/mediawiki/2017/9/9d/SSTi-SZGD_logo.png"/>
 
+
<span>SSTi-SZGD</span>
</div>
+
 
+
</div>
 
+
<div class="column half_size" >
+
<!--nav-->
 
+
<nav class="nav">
<h5>References</h5>
+
<p>iGEM teams are encouraged to record references you use during the course of your research. They should be posted somewhere on your wiki so that judges and other visitors can see how you thought about your project and what works inspired you.</p>
+
<!--nav_fist-->
 
+
<ul>
</div>
+
 
+
<!--Home-->
 
+
<li class="Home mainnav">
<div class="column half_size" >
+
<a href="https://2017.igem.org/Team:SSTi-SZGD">
<h5>Inspiration</h5>
+
<span>Home</span>
<p>See how other teams have described and presented their projects: </p>
+
</a>
 
+
</li>
<ul>
+
<li><a href="https://2016.igem.org/Team:Imperial_College/Description">2016 Imperial College</a></li>
+
<!--Project-->
<li><a href="https://2016.igem.org/Team:Wageningen_UR/Description">2016 Wageningen UR</a></li>
+
<li class="Project mainnav hvr-overline-from-center">
<li><a href="https://2014.igem.org/Team:UC_Davis/Project_Overview"> 2014 UC Davis</a></li>
+
<span>Project</span>
<li><a href="https://2014.igem.org/Team:SYSU-Software/Overview">2014 SYSU Software</a></li>
+
<!--Project_nav-->
</ul>
+
<ul class="unify">
</div>
+
<li>
 
+
<a href="https://2017.igem.org/Team:SSTi-SZGD/Description">Description</a>
 
+
</li>
 
+
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Expression">Expression</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Degradation">Degradation</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Applied_Design">Applied Design</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/InterLab">InterLab</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Safety">Safety</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Notebook">Notebook</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Experiments">Experiments</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<!--Application-->
 +
<li class="Application mainnav hvr-overline-from-center">
 +
<span>Application</span>
 +
<ul class="unify">
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Business_Plan">Business Plan</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Software">Software</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Hardware">Hardware</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<!--Human Practices-->
 +
<li class="Human_Practices mainnav hvr-overline-from-center">
 +
<span>Human Practices</span>
 +
<!--Human Practices_nav-->
 +
<ul class="unify">
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/HP/Silver">Summary</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/HP/Gold_Integrated">Intergrated HP</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/HP/Outreach">Outreach</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Collaborations">Collaboration</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<!--Achievement-->
 +
<li class="Achievement mainnav hvr-overline-from-center">
 +
<span>Achievement</span>
 +
<!--Achievement_nav-->
 +
<ul class="unify">
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Parts">Parts</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Medal">Medal</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
<!--Team-->
 +
<li class="Team mainnav hvr-overline-from-center">
 +
<span>Team</span>
 +
<!--Team_nav-->
 +
<ul class="unify">
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Team">Team</a>
 +
</li>
 +
<li>
 +
<a href="https://2017.igem.org/Team:SSTi-SZGD/Attributions">Attributions</a>
 +
</li>
 +
</ul>
 +
</li>
 +
 +
</ul>
 +
 +
</nav>
 +
 +
</div>
 +
 +
</div>
 +
 +
 +
 +
<!--Content-->
 +
<div class="Content">
 +
 +
<!--Why We Need it?-->
 +
<div class="Need">
 +
 +
<p class="title">Pesticide Residue Sweeper--Why We Need it?</p>
 +
<p>
 +
The level of pesticide usage in China is 2.5 times above the world average. In June 2016, the total output of chemical pesticides in China was around 3.347 million tons, up by 7.17% compared with the same period of 2015. The deterioration effects of long-term and overdose usage of pesticide in soil include soil erosion, soil contamination, water pollution, organic pollution, reducing biodiversity, etc.
 +
<br />
 +
A range of chemical and physical methods have been applied to degrade pesticide residues. The shortfalls of these methods include high in cost, harmful to non-target organisms, food, plants and soils, and likely to cause secondary pollution. We intend to develop a microbial degradation method with low toxicity, low cost and high efficiency to serve a positive role in maintaining ecological balance.
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/6/63/SSTi-SZGD_Description_Need_Figure.png" alt="Figure"/>
 +
 +
 +
</div>
 +
 +
<!--What we will do?-->
 +
<div class="Will">
 +
 +
<p class="title">What we will do?</p>
 +
 +
<div class="left">
 +
 +
<p>
 +
SSTi-iGEM combined optogenetics and biotechnology, using genetically modified E.coli as a carrier, to improve the microbial method for pesticide residue degradation in soil. We used a light-regulated gene expression system (LightOFF) that efficiently over-express heterogenous hydrolases which degrade insecticide organophosphorus or fungicide carbendazim. This application can result to two forms of products: enzyme and whole cell products. In addition, we propose to develop an automatic praying system that facilitates the application of whole cell products in real-life scenario.
 +
</p>
 +
 +
</div>
 +
 +
<div class="right">
 +
 +
<img src="https://static.igem.org/mediawiki/2017/d/dc/SSTi-SZGD_Description_Will_Figure.png" alt="Figure"/>
 +
 +
</div>
 +
 +
</div>
 +
 +
<!--How to do it?----Project Design-->
 +
<div class="Do">
 +
 +
<p class="title">How to do it?----Project Design</p>
 +
 +
<div class="left">
 +
 +
<p class="Headline"><span><a href="https://2017.igem.org/Team:SSTi-SZGD/Expression" target="_blank">Expression</a></span></p>
 +
 +
<p>
 +
Our LightOFF expression system constitutes a fusion protein of LexA repressor from E. coli SOS regulon, and a blue light sensor (VVD) from Neurospora crassa. Light irradiation causes conformational change of VVD and subsequent dimerization of the fusion protein. The activated dimer thus binds its cognate operator sequence and represses the promoter activity. We first tested its function and induction efficiency.
 +
</p>
 +
 +
<img src="https://static.igem.org/mediawiki/2017/5/55/SSTi-SZGD_Description_Do_Figure.png" alt="Figure"/>
 +
 +
</div>
 +
 +
<div class="right">
 +
 +
<p class="Headline"><span><a href="https://2017.igem.org/Team:SSTi-SZGD/Degradation" target="_blank">Degradation</a></span></p>
 +
 +
<p>
 +
There are a few identified gene encoding hydrolases to detoxifiy organophosphate and carbendazim pesticides. After a PubMed and iGEM search, we came up with two candidate genes: opd A and mheI. The former has been used in other iGEM projects before and proven working, the latter was conserved in many bacteria species that use carbendazim as a carbon source. We also added a signal peptide from Tat translocase of E. coli to help with protein exportation.
 +
</p>
 +
 +
<p class="subtitle"><a href="https://2017.igem.org/Team:SSTi-SZGD/Degradation" target="_blank">Cell suicide</a></p>
 +
 +
<p class="subparagraph">
 +
We considered the risk of releasing GMOs to the natural environment. So we chose to inclulde a suicide gene in the system. Supernova, an engineered genetically-encoded photosensitizer, containing chromphores that generate reactive oxygen species (ROS) upon illumination, and can be used to promote apoptosis in prokaryotic cells. When combine with LightOFF system, darkness induces supernova expression, while light irradiation triggers the release of ROS to promote cell death.
 +
</p>
 +
 +
<p class="subtitle"><a href="https://2017.igem.org/Team:SSTi-SZGD/Applied_Design" target="_blank">Pesticide Residue Sweeper</a></p>
 +
 +
<p class="subparagraph">
 +
By combining the above three elements together, we could efficiently produce enzyme (hydrolase) products or construct a live biocatalyst with applications in farms, orchards and gardens. We mainly focused on the product design, target customers, and cost analysis to identify markets. In addition, we developed an automatic spraying device to be used with live biocatalysts.
 +
</p>
 +
 +
</div>
 +
 +
</div>
 +
 +
</div>
 +
 +
 +
 +
<!--footer-->
 +
<footer class="footer_box">
 +
 +
<div class="footer">
 +
 +
<!--sponsor-->
 +
<div class="sponsor">
 +
<img src="https://static.igem.org/mediawiki/2017/9/9d/SSTi-SZGD_logo.png" alt="SSTi-SZGD"/>
 +
<img src="https://static.igem.org/mediawiki/2017/e/e0/SSTi-SZGD_logo_SSTI.png" alt="SSTI"/>
 +
<img src="https://static.igem.org/mediawiki/2017/8/8c/SSTi-SZGD_logo_USZ.png" alt="USZ"/>
 +
<img src="https://static.igem.org/mediawiki/2017/d/d2/SSTi-SZGD_logo_SSTIABD.png" alt="SSTIABD"/>
 +
<img src="https://static.igem.org/mediawiki/2017/9/95/SSTi-SZGD_logo_PRS.png" alt="PRS"/>
 +
</div>
 +
 +
<!--copyright-->
 +
<div class="copyright">
 +
<p>
 +
<span class="left">
 +
A product&nbsp;for&nbsp;the&nbsp;degradation&nbsp;of&nbsp;soil&nbsp;pesticide&nbsp;residues
 +
</span>
 +
<span class="right">
 +
Copyright&nbsp;&copy;&nbsp;2017&nbsp;Lucky&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;power&nbsp;by&nbsp;&nbsp;iGEM&nbsp;Team&#58;SSTi-SZGD
 +
</span>
 +
</p>
 +
</div>
 +
 +
</div>
 +
 +
 +
</footer>
 +
 +
 +
</body>
 
</html>
 
</html>

Latest revision as of 10:13, 1 November 2017

SSTi-SZGD---Description

Pesticide Residue Sweeper--Why We Need it?

The level of pesticide usage in China is 2.5 times above the world average. In June 2016, the total output of chemical pesticides in China was around 3.347 million tons, up by 7.17% compared with the same period of 2015. The deterioration effects of long-term and overdose usage of pesticide in soil include soil erosion, soil contamination, water pollution, organic pollution, reducing biodiversity, etc.
A range of chemical and physical methods have been applied to degrade pesticide residues. The shortfalls of these methods include high in cost, harmful to non-target organisms, food, plants and soils, and likely to cause secondary pollution. We intend to develop a microbial degradation method with low toxicity, low cost and high efficiency to serve a positive role in maintaining ecological balance.

Figure

What we will do?

SSTi-iGEM combined optogenetics and biotechnology, using genetically modified E.coli as a carrier, to improve the microbial method for pesticide residue degradation in soil. We used a light-regulated gene expression system (LightOFF) that efficiently over-express heterogenous hydrolases which degrade insecticide organophosphorus or fungicide carbendazim. This application can result to two forms of products: enzyme and whole cell products. In addition, we propose to develop an automatic praying system that facilitates the application of whole cell products in real-life scenario.

Figure

How to do it?----Project Design

Expression

Our LightOFF expression system constitutes a fusion protein of LexA repressor from E. coli SOS regulon, and a blue light sensor (VVD) from Neurospora crassa. Light irradiation causes conformational change of VVD and subsequent dimerization of the fusion protein. The activated dimer thus binds its cognate operator sequence and represses the promoter activity. We first tested its function and induction efficiency.

Figure

Degradation

There are a few identified gene encoding hydrolases to detoxifiy organophosphate and carbendazim pesticides. After a PubMed and iGEM search, we came up with two candidate genes: opd A and mheI. The former has been used in other iGEM projects before and proven working, the latter was conserved in many bacteria species that use carbendazim as a carbon source. We also added a signal peptide from Tat translocase of E. coli to help with protein exportation.

Cell suicide

We considered the risk of releasing GMOs to the natural environment. So we chose to inclulde a suicide gene in the system. Supernova, an engineered genetically-encoded photosensitizer, containing chromphores that generate reactive oxygen species (ROS) upon illumination, and can be used to promote apoptosis in prokaryotic cells. When combine with LightOFF system, darkness induces supernova expression, while light irradiation triggers the release of ROS to promote cell death.

Pesticide Residue Sweeper

By combining the above three elements together, we could efficiently produce enzyme (hydrolase) products or construct a live biocatalyst with applications in farms, orchards and gardens. We mainly focused on the product design, target customers, and cost analysis to identify markets. In addition, we developed an automatic spraying device to be used with live biocatalysts.