Difference between revisions of "Team:Nanjing-China/Results"

 
Line 140: Line 140:
 
             <table width="80%" border="0" cellspacing="1" cellpadding="1">
 
             <table width="80%" border="0" cellspacing="1" cellpadding="1">
 
             <tr>
 
             <tr>
               <td colspan="2"><p>As  is shown to all of us, the whole sequence is about 1500 base-pairs while the  vector is 2000 base-pairs. SDS-PAGE analysis also showed the expression of the  regulator, protein FRMR, around 15kd. Therefore, we moved forward to further  property study.</p></td>
+
               <td colspan="2"><p>As  is shown in figure1, the whole sequence of our formaldehyde pathway is about 1500 base-pairs while the  vector is 2000 base-pairs. SDS-PAGE analysis(figure 2) also shows the expression of the  regulator, protein FRMR, around 15kd. Therefore, we moved forward to further  property study.</p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
 
               <td><div align="center">
 
               <td><div align="center">
                 <p><img src="https://static.igem.org/mediawiki/2017/c/ca/T-Nanjing-China-ch2o-6.png" width="310" height="403" /></p>
+
                 <p><img src="https://static.igem.org/mediawiki/2017/c/ca/T-Nanjing-China-ch2o-6.png" height="400" /></p>
 
                 <p><font size="-1">Figure1.Whole-cell sequence dual-enzyme digestion</font></p>
 
                 <p><font size="-1">Figure1.Whole-cell sequence dual-enzyme digestion</font></p>
 
               </div></td>  
 
               </div></td>  
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/a/ae/T-Nanjing-China-ch2o-7.png" width="400" height="366" />
+
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/a/ae/T-Nanjing-China-ch2o-7.png" height="400" />
 
               <p><font size="-1">Figure2.SDS-PAGE analysis of recombinant E.coli expressing FrmR</font></p></div></td>
 
               <p><font size="-1">Figure2.SDS-PAGE analysis of recombinant E.coli expressing FrmR</font></p></div></td>
 
             </tr>
 
             </tr>
Line 154: Line 154:
 
               <p>&nbsp;</p>
 
               <p>&nbsp;</p>
 
               </blockquote>
 
               </blockquote>
               <p>This diagram illustrates the fluorescence intensity change induced by formaldehyde along with interval time 2 hours. The peak value occurs after 6 hours, that is, only requiring 6 hours, the detecting results can be seen with naked-eyes. Compared to the blank control, experimental group with formaldehyde induction turns to pink apparently, meaning the designed reporter pathway have worked. </p></td>
+
               <p>Figure3 illustrates the fluorescence intensity change induced by formaldehyde along with an interval of 2 hours. The peak value occurs after 6 hours, which means  the detecting results can be seen with naked-eyes after only 6 hours. As is shown in figure 4, compared to the blank control, experimental group with formaldehyde induction turns to pink apparently, meaning the designed reporter pathway has worked. </p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/8/88/T-Nanjing-China-ch2o-8.png" width="350" height="251" /><p><font size="-1">Figure  3. Influence of Formaldehyde Induce Time on Fluorescence Expression</font></p></div></td>
+
               <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/8/88/T-Nanjing-China-ch2o-8.png" width="500" /><p><font size="-1">Figure  3. Influence of Formaldehyde Induce Time on Fluorescence Expression</font></p></div></td>
               <td><div align="center">
+
               <td>
                 <p><img src="https://static.igem.org/mediawiki/2017/0/04/T-Nanjing-China-ch2o-9.png" width="350" height="245" /></p>
+
            </tr>
 +
            <tr>
 +
            <td colspan="2"> <div align="center">
 +
                 <img src="https://static.igem.org/mediawiki/2017/0/04/T-Nanjing-China-ch2o-9.png" width="500" height="353" />
 
               <p><font size="-1">Figure4.A photograph of E.coli cells containing the formaldehyde-induced RFP expression  plasmid, or without formaldehyde induction, and re-suspended in PBS  buffer(pH7.4)</font></p>
 
               <p><font size="-1">Figure4.A photograph of E.coli cells containing the formaldehyde-induced RFP expression  plasmid, or without formaldehyde induction, and re-suspended in PBS  buffer(pH7.4)</font></p>
 
               </div></td>
 
               </div></td>
 
             </tr>
 
             </tr>
 +
            <tr>
 +
            <td colspan="2">It is worth to be mentioned that the team <a href="https://2017.igem.org/Team:Nanjing-China/Collaborations">OUC</a> help us validate the result.</td></tr>
 
             <tr>
 
             <tr>
 
               <td colspan="2"><p>&nbsp;</p>
 
               <td colspan="2"><p>&nbsp;</p>
                 <p>Moreover, in order to set up the corresponding relationship between the quantity of formaldehyde and the fluorescence value, we prepared a series of gradient concentrations of formaldehyde. We found out that from the concentrations of 300 micromole to 600 micromole, a preferable equation of linear regression could be obtained, which laid the cornerstone for creating precise and sensitive detecting devices.
+
                 <p>Moreover, in order to set up the corresponding relationship between the quantity of formaldehyde and the fluorescence value, we prepared a series of concentrations of formaldehyde(figure5a.). We found out that from the concentration of 300 micromole to 600 micromole, a preferable equation of linear regression could be obtained(figure5b.), which laid the cornerstone for creating precise and sensitive detecting devices.
 
               </p></td>
 
               </p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/7/76/T-Nanjing-China-ch2o-10.png" width="350" height="265" /></div></td>
+
               <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/7/76/T-Nanjing-China-ch2o-10.png" width="500" />a)</div></td>
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/9/98/T-Nanjing-China-ch2o-11.png" width="350" height="265" /></div></td>
+
            </tr>
 +
            <tr>
 +
               <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/9/98/T-Nanjing-China-ch2o-11.png" width="500" />b)</div></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
Line 176: Line 183:
 
           </tr>
 
           </tr>
 
           <tr>
 
           <tr>
             <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/7/76/T-Nanjing-China-ch2o-l2.png" width="600" />
+
             <td colspan="2"><p >&nbsp;</p>
             <p><font size="-1">Figure6. Optical density(600nm) of (a) Escherichia coli BL21 and (b) recombinant bioluminescent Escherichia coli BL21 harboring frmR-RFP fusion after 10 hours’ incubation with 800uM different aldehydes</font></p></div></td></tr>
+
             <p >Then we incubated our recombinant E. coli for more than 10 hours to test their reponse growth rates(figure 6a) and tolerance(figure 6b) to different concentrations of formaldehyde. </p></td>
          <tr>
+
          </tr>
 
           <tr>
 
           <tr>
 
             <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/0/0e/T-Nanjing-China-ch2o-l1.png" width="600" />
 
             <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/0/0e/T-Nanjing-China-ch2o-l1.png" width="600" />
             <p><font size="-1">Figure7.Response growth curve for recombinant bioluminescent Escherichia coli BL21 to different concentration of formaldehyde</font></p></div></td></tr>
+
             <p><font size="-1">Figure6a.Response growth curve for recombinant bioluminescent Escherichia coli BL21 to different concentration of formaldehyde</font></p></div></td></tr>
          <tr>
+
 
             <tr>
 
             <tr>
             <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/6/6a/T-Nanjing-China-ch2o-l3.png" width="350" />
+
             <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/2/22/T-Nanjing-China-ch2o-l4.png" width="500" />
            <p><font size="-1">Figure8.Fluorescence test of various aldehydes using recombinant bioluminescent Escherichia coli BL21</font></p></div></td>
+
             <p><font size="-1">Figur6b.The tolerance of recombinant bioluminescent Escherichia coli BL21 to various concentration of formaldehyde</font></p></div></td></tr>
            <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/2/22/T-Nanjing-China-ch2o-l4.png" width="350" />
+
             <p><font size="-1">Figure9.The tolerance of recombinant bioluminescent Escherichia coli BL21 to various concentration of formaldehyde</font></p></div></td></tr>
+
 
           <tr>
 
           <tr>
            <td colspan="2">It is worth to be mentioned that the team <a href="https://2017.igem.org/Team:Nanjing-China/Collaborations">OUC</a> help us demonstrate the result.</td></tr>
+
          <td colspan="2"><p>&nbsp;</p>
 +
            <p>Finally, we tested the selectivity of our formaldehyde pathway by inducing the recombinant E. coli with acetaldehyde, DMSO and 6 other aldehydes. The results(figure 7) demonstrated good selsctivity of our recombinant plasmids. </p></td></tr>
 +
            <tr>
 +
            <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/6/6a/T-Nanjing-China-ch2o-l3.png" width="500" />
 +
            <p><font size="-1">Figure7.Fluorescence test of various aldehydes using recombinant bioluminescent Escherichia coli BL21</font></p></div></td></tr>
 
           </table>
 
           </table>
 
         </div>
 
         </div>
Line 197: Line 205:
 
           <img src="https://static.igem.org/mediawiki/2017/c/c7/T-Nanjing-China-project-h2s.png" width="40%"/>
 
           <img src="https://static.igem.org/mediawiki/2017/c/c7/T-Nanjing-China-project-h2s.png" width="40%"/>
 
           <table width="80%" border="0" cellspacing="1" cellpadding="1">
 
           <table width="80%" border="0" cellspacing="1" cellpadding="1">
 +
          <td colspan="2"><p>We first analyzed the product by dual-enzyme digestion and electrophoresis(figure8). As can be seen, our hydrogen sulfide sensing sequence is over 3,000 base pairs.</p></td></tr>
 
             <tr>
 
             <tr>
            <td colspan="2"><p>A plate sensitive assay measuring S<sup>2–</sup> tolerance of E. coli cells with constructed probe pathway. All plates were incubated at 37℃ for 18 h before being read. No significant influence appeared to the growth of E. coli at a concentration lower than 10mmol/L.</p></td>
+
          <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/c/c6/T-Nanjing-China-h2s-5.png" width="400" />
 +
            <p><font size="-1">Figure8.Whole-cell sequence dual-enzyme digestion</font></p></div></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
              <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/3/3c/T-Nanjing-China-h2s-4-1.jpg" width="524" height="400" /></div></td>
+
            <td colspan="2"><p>&nbsp;</p>
 +
              <p>Next, we conducted a plate sensitive assay to measure the S<sup>2–</sup> tolerance of E. coli cells with constructed probe pathway. All plates were incubated at 37℃ for 18 h before reading. No significant influence appeared to the growth of E. coli at a concentration lower than 10mmol/L.</p></td>
 
             </tr>
 
             </tr>
          <tr>
+
            <tr>
          <td><p>We analysised the product by dual-enzyme digestion and electrophoresis.</p></td>
+
              <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/3/3c/T-Nanjing-China-h2s-4-1.jpg" width="524" height="400" /><br>
          <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/c/c6/T-Nanjing-China-h2s-5.png" width="400" />
+
              <font size="-1">Figure 9. Tolerance test</font></div></td>
            <p><font size="-1">Figure1.Whole-cell sequence dual-enzyme digestion</font></p></div></td>
+
            </tr>
 +
<tr>
 +
            <td colspan="2"><p>&nbsp;</p>
 +
              <p>Cells were then grown to midlog phase under aerobic conditions and 0 ~ 250 μM Na<sub>2</sub>S. Cells were harvest after 17h and assayed for fluorescence intensity. Error bars indicate SD of the mean.</p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
             <td><p><font size="-1">a)</font></p><img src="https://static.igem.org/mediawiki/2017/6/63/T-Nanjing-China-h2s-6.png" width="350" /></td>
+
             <td colspan="2"><p><font size="-1">Figure10 a)RFP responsiveness of the detector system.</font></p>              <div align="center"><img src="https://static.igem.org/mediawiki/2017/6/63/T-Nanjing-China-h2s-6.png" width="500" /></div></td></tr>
             <td><p><font size="-1">b)</font></p><img src="https://static.igem.org/mediawiki/2017/4/4d/T-Nanjing-China-h2s-8.png" width="350" /><p><font size="-1"></td>
+
            <tr>
 +
             <td colspan="2"><p>&nbsp;</p>
 +
              <p><font size="-1">Figure10 b) A visible photograph of a).</font></p>
 +
              <div align="center"><img src="https://static.igem.org/mediawiki/2017/4/4d/T-Nanjing-China-h2s-8.png" width="500" /></div></td>
 
             </tr>
 
             </tr>
 +
            <tr>
 +
            <td colspan="2"><p>&nbsp;</p>
 +
              <p>Finally, we examined the plasmid's selectivity against SO<sub>4</sub><sup>2-</sup>, SO<sub>3</sub><sup>2-</sup> and 4 other chemical reagents(figure 11).</p></td>
 +
            </tr>
 +
            <tr>
 
             <tr>
 
             <tr>
             <td><p><font size="-1">c)</font></p><img src="https://static.igem.org/mediawiki/2017/b/bc/T-Nanjing-China-h2s-9.png" width="400" /><p><font size="-1"></p></p></td>
+
             <td colspan="2"><div align="center">
            <td><p><font size="-1">Figure2.a)RFP responsiveness of the detector system.<br />
+
              <img src="https://static.igem.org/mediawiki/2017/b/bc/T-Nanjing-China-h2s-9.png" width="500" />
            b) A visible photograph of a).<br />
+
              <p><font size="-1">Figure 11.Test of selectivity.</font></p>
             c) Test of selectivity.</font></p></td>
+
             </div></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
             <td colspan="2"><p>RFP responsiveness of the detector system. Cells were grown to midlog phase under aerobic conditions and 0 ~ 250 μM Na<sub>2</sub>S. Cells were harvest after 17h and assayed for fluorescence intensity. Error bars indicate SD of the mean.</p></td>
+
             <td colspan="2"><p>&nbsp;</p></td>
 
             </tr>
 
             </tr>
 
           </table>
 
           </table>
Line 229: Line 251:
 
           <table width="80%" border="0" cellspacing="1" cellpadding="1">
 
           <table width="80%" border="0" cellspacing="1" cellpadding="1">
 
             <tr>
 
             <tr>
               <td colspan="2"><p>Now we&rsquo;ve succefully detected the  protein expression by SDS-Page analysis and Western blot analysis.</p></td>
+
               <td colspan="2"><p>First we succefully detected the  protein expression by SDS-Page(figure 12a) analysis and Western blot(figure 12b) analysis.</p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
 
               <td><div align="center">
 
               <td><div align="center">
                 <img src="https://static.igem.org/mediawiki/2017/1/10/T-Nanjing-China-h2-7.png" width="350" height="333" />
+
                 <img src="https://static.igem.org/mediawiki/2017/1/10/T-Nanjing-China-h2-7.png" height="400" />
                 <p><font size="-1">Figure1. Coomassie  Brilliant Blue R-250-stained SDS-Page analysis of recombinant E.coli expressing  hoxABCJ-terminator-hoxp-gfp</font></p>
+
                 <p><font size="-1">Figure12a. Coomassie  Brilliant Blue R-250-stained SDS-Page analysis of recombinant E.coli expressing  hoxABCJ-terminator-hoxp-gfp</font></p>
 
               </div></td>  
 
               </div></td>  
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/9/9f/T-Nanjing-China-h2-8.png" width="350" height="411" />
+
               <td><div align="center"><img src="https://static.igem.org/mediawiki/2017/9/9f/T-Nanjing-China-h2-8.png" height="400" />
               <p><font size="-1">Fingure 2. Western blot analysis of recombinant E.coli expressing his-hoxA</font></p></div></td>
+
               <p><font size="-1">Fingure 12b. Western blot analysis of recombinant E.coli expressing his-hoxA</font></p></div></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
             <td colspan="2"><p>Fluorescence  intensity remains stationary when IPTG is added.<br />
+
             <td colspan="2"><p>&nbsp;</p>
              And Fluorescence intensity increases in a low hydrogen atmosphere.<br />
+
              <p>Fluorescence  intensity remains stationary when IPTG is added.
              When  the amount of hydrogen goes to a higher level Fluorescence intensity increases  apparently. meaning the designed reporter pathway have worked. </p></td>
+
              Whereas, it increases in a low hydrogen atmosphere.             When  the amount of hydrogen goes to an even higher level, fluorescence intensity increases  apparently, meaning the designed report pathway works as expected(figure 13). </p></td>
 
             </tr>
 
             </tr>
 
             <tr>
 
             <tr>
               <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/6/69/T-Nanjing-China-h2-9.png" width="500" height="250" />
+
               <td colspan="2"><div align="center"><img src="https://static.igem.org/mediawiki/2017/6/69/T-Nanjing-China-h2-9.png" width="550" />
               <p><font size="-1">Figure  3. Influence of H<sub>2</sub>  concentration on fluorescence expression</font></p>
+
               <p><font size="-1">Figure  13. Influence of H<sub>2</sub>  concentration on fluorescence expression</font></p>
 
               </div></td>
 
               </div></td>
 
             </tr>
 
             </tr>

Latest revision as of 15:23, 1 November 2017

Team:Nanjing-China - 2017.igem.org

 

In the part of lab work, we have designed three biosensor sequences and improved an old part, BBa_J23100. What's more, all the three designs have been demonstrated by us.

 

As is shown in figure1, the whole sequence of our formaldehyde pathway is about 1500 base-pairs while the vector is 2000 base-pairs. SDS-PAGE analysis(figure 2) also shows the expression of the regulator, protein FRMR, around 15kd. Therefore, we moved forward to further property study.

Figure1.Whole-cell sequence dual-enzyme digestion

Figure2.SDS-PAGE analysis of recombinant E.coli expressing FrmR

 

Figure3 illustrates the fluorescence intensity change induced by formaldehyde along with an interval of 2 hours. The peak value occurs after 6 hours, which means the detecting results can be seen with naked-eyes after only 6 hours. As is shown in figure 4, compared to the blank control, experimental group with formaldehyde induction turns to pink apparently, meaning the designed reporter pathway has worked.

Figure 3. Influence of Formaldehyde Induce Time on Fluorescence Expression

Figure4.A photograph of E.coli cells containing the formaldehyde-induced RFP expression plasmid, or without formaldehyde induction, and re-suspended in PBS buffer(pH7.4)

It is worth to be mentioned that the team OUC help us validate the result.

 

Moreover, in order to set up the corresponding relationship between the quantity of formaldehyde and the fluorescence value, we prepared a series of concentrations of formaldehyde(figure5a.). We found out that from the concentration of 300 micromole to 600 micromole, a preferable equation of linear regression could be obtained(figure5b.), which laid the cornerstone for creating precise and sensitive detecting devices.

a)
b)

Figure5.Fluorescence measurement of E.coli cells containing the formaldehyde-induced RFP expression plasmid after gradient concentrations of formaldehyde induction and re-suspended in PBS buffer(pH7.4)

 

Then we incubated our recombinant E. coli for more than 10 hours to test their reponse growth rates(figure 6a) and tolerance(figure 6b) to different concentrations of formaldehyde.

Figure6a.Response growth curve for recombinant bioluminescent Escherichia coli BL21 to different concentration of formaldehyde

Figur6b.The tolerance of recombinant bioluminescent Escherichia coli BL21 to various concentration of formaldehyde

 

Finally, we tested the selectivity of our formaldehyde pathway by inducing the recombinant E. coli with acetaldehyde, DMSO and 6 other aldehydes. The results(figure 7) demonstrated good selsctivity of our recombinant plasmids.

Figure7.Fluorescence test of various aldehydes using recombinant bioluminescent Escherichia coli BL21

We first analyzed the product by dual-enzyme digestion and electrophoresis(figure8). As can be seen, our hydrogen sulfide sensing sequence is over 3,000 base pairs.

Figure8.Whole-cell sequence dual-enzyme digestion

 

Next, we conducted a plate sensitive assay to measure the S2– tolerance of E. coli cells with constructed probe pathway. All plates were incubated at 37℃ for 18 h before reading. No significant influence appeared to the growth of E. coli at a concentration lower than 10mmol/L.


Figure 9. Tolerance test

 

Cells were then grown to midlog phase under aerobic conditions and 0 ~ 250 μM Na2S. Cells were harvest after 17h and assayed for fluorescence intensity. Error bars indicate SD of the mean.

Figure10 a)RFP responsiveness of the detector system.

 

Figure10 b) A visible photograph of a).

 

Finally, we examined the plasmid's selectivity against SO42-, SO32- and 4 other chemical reagents(figure 11).

Figure 11.Test of selectivity.

 

First we succefully detected the protein expression by SDS-Page(figure 12a) analysis and Western blot(figure 12b) analysis.

Figure12a. Coomassie Brilliant Blue R-250-stained SDS-Page analysis of recombinant E.coli expressing hoxABCJ-terminator-hoxp-gfp

Fingure 12b. Western blot analysis of recombinant E.coli expressing his-hoxA

 

Fluorescence intensity remains stationary when IPTG is added. Whereas, it increases in a low hydrogen atmosphere. When the amount of hydrogen goes to an even higher level, fluorescence intensity increases apparently, meaning the designed report pathway works as expected(figure 13).

Figure 13. Influence of H2 concentration on fluorescence expression