Difference between revisions of "Team:WashU StLouis/HP/Silver"

Line 53: Line 53:
  
 
     <p style="font-size:1.5vw">He pointed out however, that just because they are naturally resistant did not mean that the systems were perfect, and any increase in protection would be useful. He suggested to us to use a control to account for cyanobacterial resistance. To accomplish this, we added the gene phrAC to our list, and decided to try to transform and test our genes in cyanobacteria. He also suggested that we look into genetically modified plants, since there is a much larger infrastructure for that kind of genetic modification.</p>
 
     <p style="font-size:1.5vw">He pointed out however, that just because they are naturally resistant did not mean that the systems were perfect, and any increase in protection would be useful. He suggested to us to use a control to account for cyanobacterial resistance. To accomplish this, we added the gene phrAC to our list, and decided to try to transform and test our genes in cyanobacteria. He also suggested that we look into genetically modified plants, since there is a much larger infrastructure for that kind of genetic modification.</p>
 +
 +
 +
</div>
 +
 +
<div style="height:2vw" class="clear"></div>
 +
 +
<div class="info_wrapper2">
 +
 +
    <p style="font-size: 2.5vw; text-align:center">UV Radiation</p>
 +
 +
    <p style="font-size:1.5vw">Later in the summer, we visited the St. Louis facilities of Monsanto and Pfizer. We were able to see closely the use of genetic engineering in industry, for agricultural and pharmaceutical purposes. After the tour at Monsanto, we were fortunate to have a group of scientists listen to our project and give advice. Our original project design used GFP as a reporter gene, to indicate whether the gene was being transcribed. However, one of the scientists pointed out that GFP also absorbs in the UV range, which would probably make our results suspect. After this, we switched our reporter gene to a blue chromoprotein that had been characterized by a previous iGEM team, which would not absorb in the UV range. Also one of the other scientists suggested that we look into the use of cyanobacteria for biofuels. One of the scientists, Dr. Larry Gilbertson, offered to connect us with Austin Burns from their legal team and also to come talk to us himself about the process of genetically engineering plants.
 +
</p>
  
  
 
</div>
 
</div>
 
</html>
 
</html>

Revision as of 17:37, 1 November 2017

Background Information

UV Radiation

As detailed on our background page, the main focus of our project is protecting photosynthetic organisms against rising UV Radiation. We came up with three main specific applications: protecting wild cyanobacteria at the poles, shielding plants (mainly crops), and creating resistant cyanobacteria for the use of biofuels. Each of these uses brought its own set of questions that we tried to answer over the summer:

  1. How do you get approval, nationally and internationally, for a genetically modified organism?
  2. Is it possible to release a genetically modified organism into the wild?
  3. Are each of these applications feasible and important?

The Effects of UV Radiation on Photosynthetic Organisms

At the very beginning of the summer, we spoke to Dr. Himadri Pakrasi, a professor at Washington University in St. Louis who studies photosynthetic processes in Cyanobacteria. At this point, our project only included three of the four genes: Dsup, phrAT, and uvsE. Our project also focused on our first application, protecting polar cyanobacteria. He pointed out first of all that testing our genes only against natural E. Coli defenses would not be very effective. This was because photosynthetic organisms exist naturally in light, and so have evolved much stronger UV radiation resistance.

He pointed out however, that just because they are naturally resistant did not mean that the systems were perfect, and any increase in protection would be useful. He suggested to us to use a control to account for cyanobacterial resistance. To accomplish this, we added the gene phrAC to our list, and decided to try to transform and test our genes in cyanobacteria. He also suggested that we look into genetically modified plants, since there is a much larger infrastructure for that kind of genetic modification.

UV Radiation

Later in the summer, we visited the St. Louis facilities of Monsanto and Pfizer. We were able to see closely the use of genetic engineering in industry, for agricultural and pharmaceutical purposes. After the tour at Monsanto, we were fortunate to have a group of scientists listen to our project and give advice. Our original project design used GFP as a reporter gene, to indicate whether the gene was being transcribed. However, one of the scientists pointed out that GFP also absorbs in the UV range, which would probably make our results suspect. After this, we switched our reporter gene to a blue chromoprotein that had been characterized by a previous iGEM team, which would not absorb in the UV range. Also one of the other scientists suggested that we look into the use of cyanobacteria for biofuels. One of the scientists, Dr. Larry Gilbertson, offered to connect us with Austin Burns from their legal team and also to come talk to us himself about the process of genetically engineering plants.