(19 intermediate revisions by 2 users not shown) | |||
Line 12: | Line 12: | ||
<style> | <style> | ||
<style> | <style> | ||
+ | h1 { | ||
+ | font-size: 4em !important; | ||
+ | font-family: Raleway, sans-serif; | ||
+ | } | ||
+ | |||
.maintext { | .maintext { | ||
position: absolute; | position: absolute; | ||
Line 26: | Line 31: | ||
font-family: Raleway, sans-serif; | font-family: Raleway, sans-serif; | ||
font-weight: 2400; | font-weight: 2400; | ||
− | font-size: | + | font-size: 4em; |
color: #ffffff; | color: #ffffff; | ||
left: 5%; | left: 5%; | ||
Line 34: | Line 39: | ||
font-family: 'Roboto slab', sans-serif; | font-family: 'Roboto slab', sans-serif; | ||
font-weight: 200; | font-weight: 200; | ||
− | font-size: | + | font-size: 3em; |
color: #4f4f4f; | color: #4f4f4f; | ||
text-align: justify; | text-align: justify; | ||
Line 40: | Line 45: | ||
top: 15%; | top: 15%; | ||
background-image:url(https://static.igem.org/mediawiki/2017/1/1b/T--Uppsala--Interlab_textbox.svg); | background-image:url(https://static.igem.org/mediawiki/2017/1/1b/T--Uppsala--Interlab_textbox.svg); | ||
+ | background-position:center center; | ||
+ | background-repeat: no-repeat; | ||
background-size:cover; | background-size:cover; | ||
line-height:150%; | line-height:150%; | ||
+ | height: 170vh; | ||
} | } | ||
.all { | .all { | ||
Line 62: | Line 70: | ||
<div class= "textbox"> <h1>Aim & Concept</h1> | <div class= "textbox"> <h1>Aim & Concept</h1> | ||
− | <br>In a field as young as synthetic biology, it remains important to improve measurement techniques to ensure quality standards for methods commonly used. iGEM headquarters | + | <br>In a field as young as synthetic biology, it remains important to improve measurement techniques to ensure quality standards for methods commonly used. iGEM headquarters reaches out to its vast pool of researchers to conduct Interlab studies to collect data in its Fourth International InterLaboratory Measurement Study. By comparing data from teams all |
− | reaches out to its vast pool of researchers to conduct Interlab studies to collect data in its | + | |
− | Fourth International InterLaboratory Measurement Study. By comparing data from teams all | + | |
around the world, iGEM contributes to reproducible and comparable results. Our team | around the world, iGEM contributes to reproducible and comparable results. Our team | ||
participated in this year’s fluorescence of GFP measurements. Reliable data for GFP is of | participated in this year’s fluorescence of GFP measurements. Reliable data for GFP is of | ||
high value for the scientific community, as it is one of the most commonly used fluorescence | high value for the scientific community, as it is one of the most commonly used fluorescence | ||
− | marker proteins in the field.<br> | + | marker proteins in the field. <br><br><br> |
The experiment was divided in 3 major parts: The transformation of the devices that were to | The experiment was divided in 3 major parts: The transformation of the devices that were to | ||
be measured (8 in total) in DHα E- coli, the establishment of standard curves with LUDOX | be measured (8 in total) in DHα E- coli, the establishment of standard curves with LUDOX | ||
− | and fluorescein and the actual measurement of the devices over 6 hours growth time.</div></div> | + | and fluorescein and the actual measurement of the devices over 6 hours growth time.<br><br>With this, we can normailse the GFP fluorescence to the OD600 of cells.<br><br><br></div></div> |
Line 77: | Line 83: | ||
<div class="row"><div class="col-md-12" style= "height:20vh"></div></div></div> | <div class="row"><div class="col-md-12" style= "height:20vh"></div></div></div> | ||
<div class="container-fluid"> | <div class="container-fluid"> | ||
− | <div class= "textbox"> <h1>Material & Methods</h1><br>Six test devices where used for measuring (<a href="http://parts.igem.org/Part:BBa_J364000">BBa_J364000</a>, <a href="http://parts.igem.org/Part:BBa_J364001">BBa_J364001</a>, <a href="http://parts.igem.org/Part:BBa_J364002">BBa_J364002</a>, <a href="http://parts.igem.org/Part:BBa_J364003">BBa_J364003</a>, <a href="http://parts.igem.org/Part:BBa_J364004">BBa_J364004</a>, <a href="http://parts.igem.org/Part:BBa_J364005">BBa_J364005</a>), as well as a positive (<a href="http://parts.igem.org/Part:BBa_I20270">BBa_I20270</a>) and negative (<a href="http://parts.igem.org/Part:BBa_R0040">BBa_R0040</a>) control. All devices carry a chloramphenicol resistance that allows positive selection. The devices were transformed into in DHα E- coli and two colonies where picked for overnight growth in 5 ml LB + Chloramphenicol to grow the cells overnight (16-18 hours) at 37°C and 220 rpm. The cultures were then diluted to an OD of 0.02 in 12 ml LB medium + antibiotic in a 50 ml falcon tube, which was covered in tin foil to avoid exhaustion of the fluorescence proteins.<br> | + | <div class= "textbox"> <h1>Material & Methods</h1><br>Six test devices where used for measuring (<a href="http://parts.igem.org/Part:BBa_J364000">BBa_J364000</a>, <a href="http://parts.igem.org/Part:BBa_J364001">BBa_J364001</a>, <a href="http://parts.igem.org/Part:BBa_J364002">BBa_J364002</a>, <a href="http://parts.igem.org/Part:BBa_J364003">BBa_J364003</a>, <a href="http://parts.igem.org/Part:BBa_J364004">BBa_J364004</a>, <a href="http://parts.igem.org/Part:BBa_J364005">BBa_J364005</a>), as well as a positive (<a href="http://parts.igem.org/Part:BBa_I20270">BBa_I20270</a>) and negative (<a href="http://parts.igem.org/Part:BBa_R0040">BBa_R0040</a>) control. All devices carry a chloramphenicol resistance that allows positive selection. The devices were transformed into in DHα E- coli and two colonies where picked for overnight growth in 5 ml LB + Chloramphenicol to grow the cells overnight (16-18 hours) at 37°C and 220 rpm. The cultures were then diluted to an OD of 0.02 in 12 ml LB medium + antibiotic in a 50 ml falcon tube, which was covered in tin foil to avoid exhaustion of the fluorescence proteins.<br><br> |
− | During the incubation at 37 °C at 220 rpm, the OD and the fluorescence were measured at 0, 2, 4 and 6 hours after standard measurements. For OD600, the reference point was obtained by measuring H2O and LUDOX-S40 (from the kit); while the fluorescence standard was obtained by measuring a dilution series of fluorescein in a 96-well plate in Fluoroskan Ascent 1.6. | + | During the incubation at 37 °C at 220 rpm, the OD and the fluorescence were measured at 0, 2, 4 and 6 hours after standard measurements. For OD600, the reference point was obtained by measuring H2O and LUDOX-S40 (from the kit); while the fluorescence standard was obtained by measuring a dilution series of fluorescein in a 96-well plate in Fluoroskan Ascent 1.6.<br><br> |
</div></div> | </div></div> | ||
Line 84: | Line 90: | ||
<div class="row"><div class="col-md-12" style= "height:20vh"></div></div></div> | <div class="row"><div class="col-md-12" style= "height:20vh"></div></div></div> | ||
<div class="container-fluid"> | <div class="container-fluid"> | ||
− | <div class= "textbox"><h1>Results</h1> | + | <div class= "textbox"><h1>Results</h1> |
− | + | <div class="row"> | |
− | + | <div class="col-md-1"></div> | |
− | + | <div class="col-md-4"> | |
− | <div class= " | + | |
− | + | ||
− | <div class=" | + | |
− | + | ||
− | + | ||
− | + | ||
<figure class="figure"> | <figure class="figure"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/c/cd/T--Uppsala--Interlab_OD.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: | + | <img src="https://static.igem.org/mediawiki/2017/c/cd/T--Uppsala--Interlab_OD.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: 100%; height: auto; padding-top: 3%;"> |
− | <figcaption class="figure-caption figtext" style="text-align: | + | <figcaption class="figure-caption figtext" style=" font-size: .85em !important; text-align: left; padding-bottom: 2%; padding-left:5%;padding-right:5%"> figure 1. The optical density in the samples over time.</figcaption> |
</figure> | </figure> | ||
− | + | </div> | |
− | + | <div class="col-md-2"></div> | |
+ | <div class="col-md-4"> | ||
<figure class="figure"> | <figure class="figure"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/0/07/T--Uppsala--Interlab_Std1.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: | + | <img src="https://static.igem.org/mediawiki/2017/0/07/T--Uppsala--Interlab_Std1.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: 100%; height: auto; padding-top: 3%;"> |
− | <figcaption class="figure-caption figtext" style="text-align: | + | <figcaption class="figure-caption figtext" style="font-size: .85em !important; text-align: left; padding-bottom: 2%; padding-left:5%;padding-right:5%"> figure 2. Standard curve of florescence.</figcaption> |
</figure> | </figure> | ||
+ | </div> | ||
+ | <div class="col-md-1"></div> | ||
+ | </div> | ||
+ | <div class="row" style="height:10vh"></div> | ||
− | + | <div class="row"> | |
− | + | <div class="col-md-4"></div> | |
+ | <div class="col-md-4"> | ||
<figure class="figure"> | <figure class="figure"> | ||
− | <img src="https://static.igem.org/mediawiki/2017/7/7b/T--Uppsala--Interlab_Std2.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: | + | <img src="https://static.igem.org/mediawiki/2017/7/7b/T--Uppsala--Interlab_Std2.jpg" class="figure-img img-fluid" style="display: block; margin: auto; width: 100%; height: auto; padding-top: 3%;"> |
− | <figcaption class="figure-caption figtext" style="text-align: | + | <figcaption class="figure-caption figtext" style="font-size: .85em !important; text-align: left; padding-bottom: 2%; padding-left:5%;padding-right:5%"> figure 3. The fluorescence standard curve in a logarithmic scale.</figcaption> |
</figure> | </figure> | ||
− | + | </div> | |
− | + | <div class="col-md-4"></div></div> | |
− | < | + | <div class="row" style="height:10vh"></div> |
− | < | + | </div> |
− | < | + | |
− | < | + | |
− | + | ||
− | + | ||
− | </div></div> | + | |
<div class= "container-fluid"> | <div class= "container-fluid"> |
Latest revision as of 22:05, 1 November 2017
Aim & Concept
In a field as young as synthetic biology, it remains important to improve measurement techniques to ensure quality standards for methods commonly used. iGEM headquarters reaches out to its vast pool of researchers to conduct Interlab studies to collect data in its Fourth International InterLaboratory Measurement Study. By comparing data from teams all around the world, iGEM contributes to reproducible and comparable results. Our team participated in this year’s fluorescence of GFP measurements. Reliable data for GFP is of high value for the scientific community, as it is one of the most commonly used fluorescence marker proteins in the field.
The experiment was divided in 3 major parts: The transformation of the devices that were to be measured (8 in total) in DHα E- coli, the establishment of standard curves with LUDOX and fluorescein and the actual measurement of the devices over 6 hours growth time.
With this, we can normailse the GFP fluorescence to the OD600 of cells.
Material & Methods
Six test devices where used for measuring (BBa_J364000, BBa_J364001, BBa_J364002, BBa_J364003, BBa_J364004, BBa_J364005), as well as a positive (BBa_I20270) and negative (BBa_R0040) control. All devices carry a chloramphenicol resistance that allows positive selection. The devices were transformed into in DHα E- coli and two colonies where picked for overnight growth in 5 ml LB + Chloramphenicol to grow the cells overnight (16-18 hours) at 37°C and 220 rpm. The cultures were then diluted to an OD of 0.02 in 12 ml LB medium + antibiotic in a 50 ml falcon tube, which was covered in tin foil to avoid exhaustion of the fluorescence proteins.
During the incubation at 37 °C at 220 rpm, the OD and the fluorescence were measured at 0, 2, 4 and 6 hours after standard measurements. For OD600, the reference point was obtained by measuring H2O and LUDOX-S40 (from the kit); while the fluorescence standard was obtained by measuring a dilution series of fluorescein in a 96-well plate in Fluoroskan Ascent 1.6.