Difference between revisions of "Team:TokyoTech/Model"

 
(14 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<link rel="stylesheet" href="main.css">
 
<link rel="stylesheet" href="main.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Poppins">
 
 
<style>
 
<style>
body,h1,h2,h3,h4,h5 {font-family: "Poppins", sans-serif}
+
body,h1,h2,h3,h4,h5 {font-family: "Arial", sans-serif}
 
body {font-size:16px;}
 
body {font-size:16px;}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
Line 15: Line 14:
 
</style>
 
</style>
 
<body>
 
<body>
 +
 +
<div id="loader-bg">
 +
  <div id="loader">
 +
    <div class="photo-show">
 +
    <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--load_1.png" width="600">
 +
    <img src="https://static.igem.org/mediawiki/2017/4/43/T--TokyoTech--load_2.png" width="600">
 +
    </div>
 +
  </div>
 +
</div>
  
 
<!-- Sidebar/menu -->
 
<!-- Sidebar/menu -->
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
 
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:20px">Close Menu</a>
 
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:20px">Close Menu</a>
   <div class="w3-container" style="margin-top: 20px;margin-bottom: 25px">
+
   <div class="w3-container" style="margin-top: 20px;margin-bottom: 25px" id="wrap">
 
     <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TokyoTech--logo_white_bright_10211603.png" style="width: 100%">
 
     <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TokyoTech--logo_white_bright_10211603.png" style="width: 100%">
 
   </div>
 
   </div>
  
   <div style="padding-top: 15px; padding-left: 25px;">
+
   <div style="padding-top: 15px; padding-left: 25px; id="wrap">
  
 
   <div id="contents" style="z-index: 10">
 
   <div id="contents" style="z-index: 10">
Line 50: Line 58:
 
     <label for="vmcb-d"><a>Experiment</a></label>
 
     <label for="vmcb-d"><a>Experiment</a></label>
 
     <ul>
 
     <ul>
         <li style="padding-bottom: 10px; padding-top: 10px">
+
 
 +
         <li>
 
         <input type="checkbox" id="vmcb-d1" />
 
         <input type="checkbox" id="vmcb-d1" />
          <label for="vmcb-d1"><a style="text-align: center;">Bacteria <br>to Human Cells ▼</a></label>
+
        <label for="vmcb-d1"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Overview" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">Overview</a></label>
 +
        </li>
 +
 
 +
        <li style="padding-bottom: 10px; padding-top: 5px">
 +
        <input type="checkbox" id="vmcb-d2" />
 +
          <label for="vmcb-d2"><a style="text-align: center;">Bacteria to <br>Human Cells ▼</a></label>
 
             <ul>
 
             <ul>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Impovement <br>Assay</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Improvement <br>Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br> Assay</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br>Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br> Analysis</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br>Analysis</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Chimeric <br> Transcription <br> Factor Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Chimeric <br> Transcription <br> Factor Assay</a></li>
 
             </ul>
 
             </ul>
 
       </li>
 
       </li>
  
       <li style="padding-bottom: 10px">
+
       <li style="padding-bottom: 3px">
       <input type="checkbox" id="vmcb-d2" />
+
       <input type="checkbox" id="vmcb-d3" />
     <label for="vmcb-d2"><a style="text-align: center;">Human Cells to Bacteria ▼</a></label>
+
     <label for="vmcb-d3"><a style="text-align: center;">Human Cells to <br>Bacteria ▼</a></label>
 
         <ul>
 
         <ul>
 
           <li><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">AHK4 Assay</a></li>
 
           <li><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">AHK4 Assay</a></li>
Line 70: Line 84:
 
         </li>
 
         </li>
  
         <li style="padding-bottom: 10px">
+
         <li>
         <input type="checkbox" id="vmcb-d3" />
+
         <input type="checkbox" id="vmcb-d4" />
     <label for="vmcb-d3"><a href="https://2017.igem.org/Team:TokyoTech/InterLab" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">InterLab</a></label>
+
     <label for="vmcb-d4"><a href="https://2017.igem.org/Team:TokyoTech/InterLab" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">InterLab</a></label>
 
         </li>
 
         </li>
 
     </ul>
 
     </ul>
Line 89: Line 103:
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Overview</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Overview</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Silver" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Silver</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Silver" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Silver</a></li>
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Gold_Integrated" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Integrated <br> Human Practice</a></li>
+
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Gold_Integrated" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Gold (Integrated)</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Demonstrate" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Demonstrate</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Demonstrate" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Demonstrate</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Collaborations" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Collaborations</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Collaborations" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Collaborations</a></li>
Line 109: Line 123:
 
   </div>
 
   </div>
 
</nav>
 
</nav>
 +
 
<!-- Top menu on small screens -->
 
<!-- Top menu on small screens -->
 
<header class="w3-container w3-top w3-hide-large w3-red w3-xlarge w3-padding">
 
<header class="w3-container w3-top w3-hide-large w3-red w3-xlarge w3-padding">
Line 129: Line 144:
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Overview</b></h1>
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Overview</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-size: 16px; text-indent:1em">In iGEM history, many teams including Tokyo_Tech tried information processing between bacteria. This year we tried to establish an artificial inter-kingdom communication between human cell and bacteria then enable their co-culture. We call this new artificial human-bacteria co-culture living system “Coli Sapiens.” Many factors like growth rate of human cells and bacterial cells are quite different and it is difficult to consider the all parameters to the model. In complex systems, only essential parameters were selected and an abstract model was designed. To evaluate this model, drylab comprehensively simulated the property of the system using data from the experiments. As a result, our simulation contributed to the suggestion of part improvement to wetlab. This part improvement increased the feasibility of the model and it indicated that concentration of <span style="font-style: italic">E. coli</span> could be controlled by human cells and the condition for co-culture. Thus, we succeeded in engineering a new living system of co-existence between human cells and <span style="font-style: italic">E. coli</span>. This could be a progress for iGEM. </p>
+
     <p style="font-size: 16px; text-indent:1em">In iGEM history, many teams including Tokyo_Tech tried information processing between bacteria. This year we tried to establish an artificial cross-kingdom communication between human cell and bacteria then enable their co-culture. We call this new artificial human-bacteria co-culture living system “Coli Sapiens.” Many factors like growth rate of human cells and bacterial cells are quite different and it is difficult to consider the all parameters to the model. In complex systems, only essential parameters were selected and an abstract model was designed. To evaluate this model, drylab comprehensively simulated the property of the system using data from the experiments. As a result, our simulation contributed to the suggestion of part improvement to wetlab. This part improvement increased the feasibility of the model and it indicated that concentration of <span style="font-style: italic">E. coli</span> could be controlled by human cells and the condition for co-culture. Thus, we succeeded in engineering a new living system of co-existence between human cells and <span style="font-style: italic">E. coli</span>. This could be a progress for iGEM. </p>
 
<center>
 
<center>
 
<figure>
 
<figure>
Line 149: Line 164:
 
     </p></br>
 
     </p></br>
 
     <p style="font-size: 20px">2-1 Introduction</p>
 
     <p style="font-size: 20px">2-1 Introduction</p>
     <p style="font-size: 16px; text-indent:1em">In our project, we use two signaling molecules, 3OC8HSL and isopentenyl adenine, to establish an artificial inter-kingdom communication between human cells and bacteria and MazF to control cell growth of <span style="font-style: italic">E. coli</span>. The details are described below.</p></br>
+
     <p style="font-size: 16px; text-indent:1em">In our project, we use two signaling molecules, 3OC8HSL (hereafter C8) and isopentenyl adenine, to establish an artificial cross-kingdom communication between human cells and bacteria and MazF to control cell growth of <span style="font-style: italic">E. coli</span>. The details are described below.</p></br>
 
     <p style="font-size: 18px">Signaling Molecules</p></br>
 
     <p style="font-size: 18px">Signaling Molecules</p></br>
     <p style="font-size: 16px"> -  3OC8HSL (C8)</p>
+
     <p style="font-size: 16px"> -  C8</p>
   <p style="font-size: 16px; text-indent:1em">
+
   <p style="font-size: 16px; text-indent:1em">C8 is one of AHLs, signaling molecules of quorum sensing. Quorum sensing is the cell-to-cell communication system used by a variety of bacteria to detect the population of cells around them. The system consists of three procedure: production of signal molecules, sensing the molecules, and responding to the signals. 3OC6HSL (C6), derived from <span style="font-style: italic">Vibrio fischeri</span>, and C8, derived from <span style="font-style: italic">Agrobacterium fumigatus</span>, are the most used signal molecules in the system and produced by LuxI and TraI proteins, respectively. C6 and C8 are the compounds called acyl-homoserine lactone (AHL) and chemical structures of these molecules are shown in Fig. 1 (Read <a href=https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay>TraI Assay</a> page).
Quorum Sensing is cell-to-cell communication system used by variety of microorganism. Signal molecular used in Quorum sensing has variety of chemical structure. LuxI is synthesis gene of 3OC6HSL and <span style="font-style: italic">TraI</span> is synthesis gene of 3OC8HSL. Chemical structures of these molecules are shown in Fig. 1.     </p>
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
  <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
<figure>
  <figure>
+
    <img src="https://static.igem.org/mediawiki/2017/d/df/T--TokyoTech--TraIstructure.jpg" style="max-width:50%">
      <img src="https://static.igem.org/mediawiki/2017/f/fd/T--TokyoTech--TraI1.jpg" style="max-width:50%">
+
    <figcaption style="font-size: 16px">Fig. 2 Chemical structures of AHL-type signal molecules </figcaption>
      <figcaption style="font-size: 16px">Fig. 2 Chemical structure of signal molecules</figcaption>
+
    </figure>
      </figure>
+
</div>
  </div>
+
     </br>
    <p style="font-size: 16px; text-indent:1em">
+
LuxR gene express intracellular LuxR receptor. Signal molecular and this receptor form complex. This complex interacts with responsive promoters, Plux and regulates transcription of downstream genes. The concentration of signal molecular increase with cell density. By using this system, microorganism assess their local density and regulates gene expression.<br>
+
In previous study, a novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR was developed (Read <a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay">TraI Assay</a> page). In this system, expression of downstream genes of CMV minimal promoter is induced in the presence of signal molecular 3OC8HSL. Therefore, we chose 3OC8HSL as a signal molecule and tried to make <span style="font-style: italic">E.coli</span> to produce 3OC8HSL.
+
     </p></br>
+
 
     <p style="font-size: 16px"> -  Isopentenyl adenine (iP)</p>
 
     <p style="font-size: 16px"> -  Isopentenyl adenine (iP)</p>
     <p style="font-size: 16px; text-indent:1em"> Isopentenyl adenine (iP) is a kind of cytokinin and we use it as a signal molecule from human cells to <span style="font-style: italic">E. coli</span> in the inter-kingdom communication. Cytokinins are the signaling molecules (or Phytohormones) that plants produce and play important roles in cell growth and differentiation. In the case of <span style="font-style: italic">Arabidopsis thaliana</span>, extracellular iP is received by a transmembrane receptor, AHK4. AHK4 has a histidine kinase activity, and binding of iP to AHK4 triggers auto-phosphorylation of AHK4 and the following histidine-to-aspartate phosphorelay. As a consequence, transcription from target genes is induced and/or repressed so that physiological states of plants are changed. The histidine kinase activity of AHK4 has shown to be activated depending on iP even in <span style="font-style: italic">E. coli</span> cells (Suzuki et al. 2001, Lukáš Spíchal et al. 2004). This fact encouraged us to use iP as a signaling molecule in our project (Read  <a href = https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay>AHK4 Assay</a> page).</p></br>
+
     <p style="font-size: 16px; text-indent:1em"> Isopentenyl adenine (iP) is a kind of cytokinin and we use it as a signal molecule from human cells to <span style="font-style: italic">E. coli</span> in the cross-kingdom communication. Cytokinins are the signaling molecules (or Phytohormones) that plants produce and play important roles in cell growth and differentiation. In the case of <span style="font-style: italic">Arabidopsis thaliana</span>, extracellular iP is received by a transmembrane receptor, AHK4 (Read  <a href = https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay>AHK4 Assay</a> page).</p></br>
 
     <p style="font-size: 18px">Growth Inhibition Molecule</p></br>
 
     <p style="font-size: 18px">Growth Inhibition Molecule</p></br>
 
     <p style="font-size: 16px"> -  Toxin-antitoxin system</p>
 
     <p style="font-size: 16px"> -  Toxin-antitoxin system</p>
Line 177: Line 188:
  
 
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
      <img src="https://static.igem.org/mediawiki/2017/e/e0/Modeling_parameter.png" style="max-width:60%">
 
</br>
 
</br>
 
 
       <figcaption style="font-size: 20px">Table. 1 Parameters </figcaption>
 
       <figcaption style="font-size: 20px">Table. 1 Parameters </figcaption>
</br>
+
      <img src="https://static.igem.org/mediawiki/2017/5/51/T--TokyoTech--Parameters2.png" style="max-width:60%">
 +
 
  
 
         <figure>
 
         <figure>
Line 231: Line 240:
 
          
 
          
 
         <p style="font-size: 20px">2-3 Analysis</p>
 
         <p style="font-size: 20px">2-3 Analysis</p>
         <p style="font-size: 16px; text-indent:1em">We obtained the result that <span style="font-style: italic">E. coli</span> grow excessively because of the concentration of C8 was low and enough expression of MazF was not induced.</p>
+
         <p style="font-size: 16px; text-indent:1em">We first obtained result that E. coli cells temporally multiple excessively, which means E. coli cells are no longer controllable (Fig. 7). According to the detailed analysis, this E. coli explosion was due to the low concentration of C8 and insufficiency of MazF expression. Therefore, we proposed a wet experimental improvement of traI coding C8 synthetic rate.</p>
  
      <div class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
    <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/a/a1/T--TokyoTech--normal_model.png" style="max-width:70%">
 
       <img src="https://static.igem.org/mediawiki/2017/a/a1/T--TokyoTech--normal_model.png" style="max-width:70%">
Line 240: Line 249:
 
       </div>
 
       </div>
  
     <p style="font-size: 16px; text-indent: 1em">This result indicated that C8 synthetic quantity was needed to increase. Thus, we proposed improvement of traI coding C8 synthetic enzyme to wetlab.
+
     <p style="font-size: 16px; text-indent: 1em">This result indicated that C8 synthetic quantity was needed to increase. Thus, we proposed improvement of <span style="font-style: italic">traI</span> coding C8 synthetic enzyme to wetlab.
  
  In wetlab, the C8 synthetic quantity was improved by introducing a single point mutation to traI (Read <a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement">TraI Improvement</a> page). Using this experiment data, the excessive <span style="font-style: italic">E. coli</span> growth was suppressed. We confirmed the desirable behavior of the whole system by modifying and improving a part.  
+
  In wetlab, the C8 synthetic quantity was improved by introducing a single point mutation to <span style="font-style: italic">traI</span> (Read <a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement">TraI Improvement</a> page). Using this experiment data, the excessive <span style="font-style: italic">E. coli</span> growth was suppressed. We confirmed the desirable behavior of the whole system by modifying and improving a part.  
  
 
     </p>
 
     </p>
 
    
 
    
     <div class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
     <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/5/5d/T--TokyoTech--improved_model.png" style="max-width:60%">
 
       <img src="https://static.igem.org/mediawiki/2017/5/5d/T--TokyoTech--improved_model.png" style="max-width:60%">
Line 256: Line 265:
 
     <p style="font-size: 16px; text-indent:1em">We confirm that the human cell and the <span style="font-style: italic">E. coli</span> can co-exist in our model, but the condition to become co-existence is supposed to be severe. And that to clarify the condition will make a substantial contribution to application of our co-culture system. Therefore, we investigate the values of variable parameters in our model, flow(x axis, f in Fig. 9) and the concentration of human cells(y axis, u in Fig. 9), to co-exist. The result graph was shown in the below, Fig. 9. The yellow area means failure of co-existence due to excessive growth of <span style="font-style: italic">E. coli</span>. The purple are means that failure of co-existence due to <span style="font-style: italic">E. coli</span> extermination. The green area means that success of co-existence. When we apply the co-culture system (Read <a href="https://2017.igem.org/Team:TokyoTech/Description">Project page</a>), we can choose the best condition to satisfy co-existence for the application.</p>
 
     <p style="font-size: 16px; text-indent:1em">We confirm that the human cell and the <span style="font-style: italic">E. coli</span> can co-exist in our model, but the condition to become co-existence is supposed to be severe. And that to clarify the condition will make a substantial contribution to application of our co-culture system. Therefore, we investigate the values of variable parameters in our model, flow(x axis, f in Fig. 9) and the concentration of human cells(y axis, u in Fig. 9), to co-exist. The result graph was shown in the below, Fig. 9. The yellow area means failure of co-existence due to excessive growth of <span style="font-style: italic">E. coli</span>. The purple are means that failure of co-existence due to <span style="font-style: italic">E. coli</span> extermination. The green area means that success of co-existence. When we apply the co-culture system (Read <a href="https://2017.igem.org/Team:TokyoTech/Description">Project page</a>), we can choose the best condition to satisfy co-existence for the application.</p>
 
   </div>
 
   </div>
  <div class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
  <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--oveall.png" style="max-width:60%">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--oveall.png" style="max-width:60%">
Line 269: Line 278:
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Reference</b></h1>
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Reference</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-size: 16px">[1]  <a href="https://2016.igem.org/Team:Tokyo_Tech/Model">iGEM 2016 Tokyo_Tech</a></p>
+
     <p style="font-size: 16px">[1]  <a href="https://2016.igem.org/Team:Tokyo_Tech/Model">iGEM 2016 Tokyo_Tech</a>, accessed October 17, 2017</p>
     <p style="font-size: 16px">[2]  <a href="https://roche-biochem.jp/catalog/category_33061/product_3.5.3.18.6.1">The protocol of β-Gal ELISA kit</a></p>
+
     <p style="font-size: 16px">[2]  <a href="https://roche-biochem.jp/catalog/category_33061/product_3.5.3.18.6.1">The protocol of β-Gal ELISA kit</a>, accessed October 17, 2017</p>
     <p style="font-size: 16px">[3] Optimal tuning of bacterial sensing potential, 2009 Anand Pai et al</p>
+
     <p style="font-size: 16px">[3] Optimal tuning of bacterial sensing potential, Molecular Systems Biology (2009) 5, 286 Anand Pai, Lingchong You</p>
     <p style="font-size: 16px">[4] Cytokinin Oxidase and the Regulation of Cytokinin Degradation, Donald J. Armstrong
+
     <p style="font-size: 16px">[4] Cytokinin Oxidase and the Regulation of Cytokinin Degradation (1994) in Cytokinins Chemistry, Activity, and Function  David W. S. Mok、Machteld C. Mok (eds) CRCPress
 
     </p>
 
     </p>
  
Line 280: Line 289:
 
</div>
 
</div>
  
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p></div>
+
<div class="w3-container" id="contact" style="margin-top:20px">
 +
<p id="pageTop" style="text-align:right"><a href="#wrap"><img src="https://static.igem.org/mediawiki/2017/0/0d/T--TokyoTech--page_top_2.png" style="width:200px"></a></p>
 +
</div>
 +
 
 +
<!-- W3.CSS Container -->
 +
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right"><a href="http://96haji.me/" title="W3.CSS" target="_blank" class="w3-hover-opacity">Hajime Fujita with W3.CSS: All Rights Reserved</a></p></div>
  
 +
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
 
<script>
 
<script>
 
// Script to open and close sidebar
 
// Script to open and close sidebar
Line 293: Line 308:
 
     document.getElementById("myOverlay").style.display = "none";
 
     document.getElementById("myOverlay").style.display = "none";
 
}
 
}
 
+
</script>
 +
<script>
 
// Modal Image Gallery
 
// Modal Image Gallery
 
function onClick(element) {
 
function onClick(element) {
Line 301: Line 317:
 
   captionText.innerHTML = element.alt;
 
   captionText.innerHTML = element.alt;
 
}
 
}
 +
$(function() {
 +
  var h = $(window).height();
 +
 +
  $('#wrap').css('display','none');
 +
  $('#loader-bg ,#loader').height(h).css('display','block');
 +
});
 +
 +
$(window).load(function () { //全ての読み込みが完了したら実行
 +
  $('#loader-bg').delay(900).fadeOut(800);
 +
  $('#loader').delay(600).fadeOut(300);
 +
  $('#wrap').css('display', 'block');
 +
});
 
</script>
 
</script>
 +
<script>
 +
//■page topボタン
 +
$(function(){
 +
var topBtn=$('#pageTop');
 +
topBtn.hide();
 +
 +
//◇ボタンの表示設定
 +
$(window).scroll(function(){
 +
  if($(this).scrollTop()>80){
 +
    //---- 画面を80pxスクロールしたら、ボタンを表示する
 +
    topBtn.fadeIn();
 +
  }else{
 +
    //---- 画面が80pxより上なら、ボタンを表示しない
 +
    topBtn.fadeOut();
 +
  }
 +
});
 +
 +
// ◇ボタンをクリックしたら、スクロールして上に戻る
 +
topBtn.click(function(){
 +
  $('body,html').animate({
 +
  scrollTop: 0},500);
 +
  return false;
 +
});
 +
 +
});
 +
</script>
 +
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 00:00, 2 November 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech

Modelling


Overview


In iGEM history, many teams including Tokyo_Tech tried information processing between bacteria. This year we tried to establish an artificial cross-kingdom communication between human cell and bacteria then enable their co-culture. We call this new artificial human-bacteria co-culture living system “Coli Sapiens.” Many factors like growth rate of human cells and bacterial cells are quite different and it is difficult to consider the all parameters to the model. In complex systems, only essential parameters were selected and an abstract model was designed. To evaluate this model, drylab comprehensively simulated the property of the system using data from the experiments. As a result, our simulation contributed to the suggestion of part improvement to wetlab. This part improvement increased the feasibility of the model and it indicated that concentration of E. coli could be controlled by human cells and the condition for co-culture. Thus, we succeeded in engineering a new living system of co-existence between human cells and E. coli. This could be a progress for iGEM.

Fig. 1 Coli Sapiens System


Simulation


We developed our models with two main goals.
1. In wetlab, a lot of noise will affect to the results because co-culture between human cells and E. coli is very complicated. Constructing the model containing only essential mechanism and integrating the data from wetlab, we improve the genetic circuits and engineer the model which enables co-culture.
2. Calculate the condition of co-existence between the human cells and E. coli changing the value of variable parameters.


2-1 Introduction

In our project, we use two signaling molecules, 3OC8HSL (hereafter C8) and isopentenyl adenine, to establish an artificial cross-kingdom communication between human cells and bacteria and MazF to control cell growth of E. coli. The details are described below.


Signaling Molecules


- C8

C8 is one of AHLs, signaling molecules of quorum sensing. Quorum sensing is the cell-to-cell communication system used by a variety of bacteria to detect the population of cells around them. The system consists of three procedure: production of signal molecules, sensing the molecules, and responding to the signals. 3OC6HSL (C6), derived from Vibrio fischeri, and C8, derived from Agrobacterium fumigatus, are the most used signal molecules in the system and produced by LuxI and TraI proteins, respectively. C6 and C8 are the compounds called acyl-homoserine lactone (AHL) and chemical structures of these molecules are shown in Fig. 1 (Read TraI Assay page).

Fig. 2 Chemical structures of AHL-type signal molecules

- Isopentenyl adenine (iP)

Isopentenyl adenine (iP) is a kind of cytokinin and we use it as a signal molecule from human cells to E. coli in the cross-kingdom communication. Cytokinins are the signaling molecules (or Phytohormones) that plants produce and play important roles in cell growth and differentiation. In the case of Arabidopsis thaliana, extracellular iP is received by a transmembrane receptor, AHK4 (Read AHK4 Assay page).


Growth Inhibition Molecule


- Toxin-antitoxin system

A toxin-antitoxin system is composed of two or more cognate genes that encode toxins and antitoxins. Toxins are proteins, whereas antitoxins are either proteins or non-coding RNAs. Many prokaryotes harbor toxin-antitoxin systems on the genomes, typically in multiple copies. Changes in the physiological conditions, such as stress conditions or viral infection trigger antitoxin degradation by cytosolic proteases. Unleashed toxin proteins impede or alter cellular processes including translation, cell division, DNA replication, ATP synthesis, mRNA stability, or cell wall synthesis and lead to dormancy. This dormant state probably enables bacteria to survive in unfavorable conditions. In general, toxin proteins are more stable than antitoxin proteins, but antitoxins are expressed at a higher level in cells. 


- MazF

MazF is a toxin protein. MazF is a ribosome-independent endoribonuclease whose activity leads to bacterial growth arrest. MazF dimer cleaves mRNAs at ACA sequences.


2-2 Mathematical model

In order to simulate our gene circuits, we developed an ordinary differential equation model. The equations and parameters to simulate our genetic circuits are shown below.


Table. 1 Parameters




Fig. 3 E. coli








Fig. 4 3OC8HSL (C8)








Fig. 5 Isopentenyl adenine (iP)








Fig. 6 MazF

2-3 Analysis

We first obtained result that E. coli cells temporally multiple excessively, which means E. coli cells are no longer controllable (Fig. 7). According to the detailed analysis, this E. coli explosion was due to the low concentration of C8 and insufficiency of MazF expression. Therefore, we proposed a wet experimental improvement of traI coding C8 synthetic rate.

Fig. 7 Result of modelling (Before improvement of TraI)

This result indicated that C8 synthetic quantity was needed to increase. Thus, we proposed improvement of traI coding C8 synthetic enzyme to wetlab. In wetlab, the C8 synthetic quantity was improved by introducing a single point mutation to traI (Read TraI Improvement page). Using this experiment data, the excessive E. coli growth was suppressed. We confirmed the desirable behavior of the whole system by modifying and improving a part.

Fig. 8 Result of modelling (After improvement of TraI)

2-4 Explore the condition of co-existence

We confirm that the human cell and the E. coli can co-exist in our model, but the condition to become co-existence is supposed to be severe. And that to clarify the condition will make a substantial contribution to application of our co-culture system. Therefore, we investigate the values of variable parameters in our model, flow(x axis, f in Fig. 9) and the concentration of human cells(y axis, u in Fig. 9), to co-exist. The result graph was shown in the below, Fig. 9. The yellow area means failure of co-existence due to excessive growth of E. coli. The purple are means that failure of co-existence due to E. coli extermination. The green area means that success of co-existence. When we apply the co-culture system (Read Project page), we can choose the best condition to satisfy co-existence for the application.

Fig. 9 Condition of Co-existence

Reference


[1] iGEM 2016 Tokyo_Tech, accessed October 17, 2017

[2] The protocol of β-Gal ELISA kit, accessed October 17, 2017

[3] Optimal tuning of bacterial sensing potential, Molecular Systems Biology (2009) 5, 286 Anand Pai, Lingchong You

[4] Cytokinin Oxidase and the Regulation of Cytokinin Degradation (1994) in Cytokinins Chemistry, Activity, and Function David W. S. Mok、Machteld C. Mok (eds) CRCPress