Difference between revisions of "Team:TokyoTech/Experiment/TraI Assay"

 
(77 intermediate revisions by 6 users not shown)
Line 3: Line 3:
 
<!DOCTYPE html>
 
<!DOCTYPE html>
 
<html>
 
<html>
<head>
 
 
<title>Coli Sapiens</title>
 
<title>Coli Sapiens</title>
 
<meta charset="UTF-8">
 
<meta charset="UTF-8">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<link rel="stylesheet" href="main.css">
 
<link rel="stylesheet" href="main.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Poppins">
 
 
<style>
 
<style>
body,h1,h2,h3,h4,h5 {font-family: "Poppins", sans-serif}
+
body,h1,h2,h3,h4,h5 {font-family: "Arial", sans-serif}
 
body {font-size:16px;}
 
body {font-size:16px;}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
 
.w3-half img:hover{opacity:1}
 
.w3-half img:hover{opacity:1}
 
</style>
 
</style>
<head>
 
 
<body>
 
<body>
 +
 +
<div id="loader-bg">
 +
  <div id="loader">
 +
    <div class="photo-show">
 +
    <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--load_1.png" width="600">
 +
    <img src="https://static.igem.org/mediawiki/2017/4/43/T--TokyoTech--load_2.png" width="600">
 +
    </div>
 +
  </div>
 +
</div>
  
 
<!-- Sidebar/menu -->
 
<!-- Sidebar/menu -->
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:22px">Close Menu</a>
+
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:20px">Close Menu</a>
   <div class="w3-container">
+
   <div class="w3-container" style="margin-top: 20px;margin-bottom: 25px" id="wrap">
     <img src="https://static.igem.org/mediawiki/2017/5/57/T--TokyoTech--logo2.png" style="width: 100%">
+
     <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TokyoTech--logo_white_bright_10211603.png" style="width: 100%">
 
   </div>
 
   </div>
   <div class="w3-bar-block" style="padding-top: 15px">
+
 
     <ul id="normal" class="dropmenu">
+
   <div style="padding-top: 15px; padding-left: 25px; id="wrap">
     <li><a href="#overview" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Home</a>  
+
 
 +
  <div id="contents" style="z-index: 10">
 +
 
 +
    <ul class="click_menu_checkbox vertm_down">
 +
    <li style="margin-bottom: 10px; border: 5px double #fff; border-radius: 10px;">
 +
    <input type="checkbox" id="vmcb-a" />
 +
    <label for="vmcb-a"><a href="https://2017.igem.org/Team:TokyoTech">Home</a></label>
 +
    </li>
 +
    <li style="margin-bottom: 10px; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-b" />
 +
    <label for="vmcb-b"><a href="https://2017.igem.org/Team:TokyoTech/Medal">Achievements</a></label>
 +
    </li>
 +
    <li style="margin-bottom: 10px; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-c" />
 +
    <label for="vmcb-c"><a>Project</a></label>
 +
    <ul>
 +
      <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Description" class="w3-bar-item w3-button w3-hover-white">Description</a></li>
 +
      <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Project/Basic_Parts" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Basic Parts</a></li>
 +
      <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Project/Composite_Parts" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Composite Parts</a></li>
 +
     </ul>
 +
    </li>
 +
 
 +
    <li style="margin-bottom: 10px; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-d" />
 +
    <label for="vmcb-d"><a>Experiment</a></label>
 +
    <ul>
 +
 
 +
        <li>
 +
        <input type="checkbox" id="vmcb-d1" />
 +
        <label for="vmcb-d1"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Overview" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">Overview</a></label>
 +
        </li>
 +
 
 +
        <li style="padding-bottom: 10px; padding-top: 5px">
 +
        <input type="checkbox" id="vmcb-d2" />
 +
          <label for="vmcb-d2"><a style="text-align: center;">Bacteria to <br>Human Cells ▼</a></label>
 +
            <ul>
 +
              <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
 +
              <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Improvement <br>Assay</a></li>
 +
              <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br>Assay</a></li>
 +
              <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br>Analysis</a></li>
 +
              <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Chimeric <br> Transcription <br> Factor Assay</a></li>
 +
            </ul>
 +
      </li>
 +
 
 +
      <li style="padding-bottom: 3px">
 +
      <input type="checkbox" id="vmcb-d3" />
 +
     <label for="vmcb-d3"><a style="text-align: center;">Human Cells to <br>Bacteria ▼</a></label>
 +
        <ul>
 +
          <li><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">AHK4 Assay</a></li>
 +
          </ul>
 +
        </li>
 +
 
 +
        <li>
 +
        <input type="checkbox" id="vmcb-d4" />
 +
    <label for="vmcb-d4"><a href="https://2017.igem.org/Team:TokyoTech/InterLab" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">InterLab</a></label>
 +
        </li>
 +
    </ul>
 +
    </li>
 +
 
 +
 
 +
    <li style="margin-bottom: 10px; text-align: center; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-e" />
 +
    <label for="vmcb-e"><a href="https://2017.igem.org/Team:TokyoTech/Model">Modelling</a></label>
 +
    </li>
 +
 
 +
    <li style="margin-bottom: 10px; text-align: center; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-f" />
 +
    <label for="vmcb-f"><a>Human Practices</a></label>
 
     <ul>
 
     <ul>
     <li><a href="#overview" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">1</a></li>
+
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Overview</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Silver" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Silver</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Gold_Integrated" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Gold (Integrated)</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Demonstrate" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Demonstrate</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Collaborations" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Collaborations</a></li>
 
     </ul>
 
     </ul>
 
     </li>
 
     </li>
 +
 +
    <li style="margin-bottom: 10px; text-align: center; border: 5px double #fff; border-radius: 10px">
 +
    <input type="checkbox" id="vmcb-g" />
 +
    <label for="vmcb-g"><a>About us</a></label>
 +
    <ul>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Team" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Team</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Attributions" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Attributions</a></li>
 +
    <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Sponsors" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Sponsors</a></li>
 
     </ul>
 
     </ul>
     <a href="#project" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Project</a>  
+
     </li>
     <a href="#modeling" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Modeling</a>  
+
     </ul>
     <a href="#hp" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Human Practices</a>  
+
     </div>
    <a href="#notebook" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Notebook</a>
+
 
    <a href="#team" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Team</a>
+
    <a href="#sponsers" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Sponsers</a>
+
 
   </div>
 
   </div>
 
</nav>
 
</nav>
Line 61: Line 144:
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Introduction</b></h1><!-- 小見出し -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Introduction</b></h1><!-- 小見出し -->
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">
+
     <p style="font-size: 16px; text-indent:1em">Quorum sensing is the cell-to-cell communication system used by a variety of bacteria to detect the population of cells around them. The system consists of three procedure: production of signal molecules, sensing the molecules, and responding to the signals. 3OC6HSL (C6), derived from <span style="font-style: italic">Vibrio fischeri</span>, and 3OC8HSL (C8), derived from <span style="font-style: italic">Agrobacterium fumigatus</span>, are the most used signal molecules in the system and produced by LuxI and TraI proteins, respectively. C6 and C8 are the compounds called acyl-homoserine lactone (AHL) and chemical structures of these molecules are shown in Fig. 1.  
Quorum Sensing is cell-to-cell communication system which is used variety of microorganism. Signal molecular used in Quorum sensing has variety of chemical structure. LuxI is 合成遺伝子 of 3OC6AHL and TraI is 合成遺伝子 of 3OC8AHL. Chemical structures of these molecule are shown Figure. 1. LuxR gene express intracellular LuxR receptor. Signal molecular and this receptor form complex. This complex interacts with responsive promoters, Plux and regulates transcription of downstream genes. The concentration of signal molecular increase with cell density. By using this system, microorganism assess their local density and regulates gene expression.<br>
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
In previous study, a novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR was developed. In this system, transcription  downstream of a region called CMV minimal promoter is induced in the presence of signal molecular 3OC8AHL. Therefore, we chose 3OC8AHL as signal molecule and tried to make E.coli to produce 3OC8AHL.
+
<figure>
 
+
    <img src="https://static.igem.org/mediawiki/2017/d/df/T--TokyoTech--TraIstructure.jpg" style="max-width:50%">
 +
    <figcaption style="font-size: 16px">Fig. 1 Chemical structures of AHL-type signal molecules </figcaption>
 +
    </figure>
 +
</div>
 +
    <p style="font-size: 16px; text-indent:1em">The production of C6 by LuxI is constitutive and C6 can be sensed by an intracellular receptor, LuxR, in other cells. The complex of LuxR and C6 forms the homodimer and promotes the activation of corresponding promoter, <span style="font-style: italic">lux</span> promoter, and the transcription of downstream genes. It should be noted that LuxI is encoded by one of those genes, meaning that the production of C6 molecules is promoted by receiving C6 molecules. Therefore, as the population of bacteria grows, the production of C6 is amplified and the expression of the target genes will increase exponentially. As a consequence, bacterial cells can sense their population density and carry out cell-density specific behaviors such as luminescence emission and pathogenicity exerting.</p>
 +
<p style="font-size: 16px; text-indent:1em">A similar mechanism presents for C8 molecule, and in this case, the TraR protein is the receptor of the molecule.</p>
 +
<div style="margin-top:16px">
 +
<p style="text-indent:1em">
 +
<p style="font-size: 16px; text-indent:1em">In a previous study, an AHL-inducible eukaryotic gene expression system was developed based on TraR (1). In this system, expression from the eukaryotic promoter (CMV minimal promoter) is induced only in the presence of C8. Therefore, we here chose C8 as a signal molecule and tried to engineer <span style="font-style: italic">E. coli</span> cells to produce C8.  
 +
<br>
 
     </p>
 
     </p>
 
   </div>
 
   </div>
 
<hr>
 
<hr>
 +
  
 
<div class="w3-container" id="overview" style="margin-top:20px"><!-- この箱の中にテキストや画像をまとめる -->
 
<div class="w3-container" id="overview" style="margin-top:20px"><!-- この箱の中にテキストや画像をまとめる -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Summary of experiment</b></h1><!-- 小見出し -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Summary of experiment</b></h1><!-- 小見出し -->
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">
+
     <p style="font-size: 16px; text-indent:1em">
In this section, we confirmed whether E. coli expressing Tral protein truly produced signal molecules, AHL (Acyl Homoserine Lactone). <br>
+
In this section, we investigated whether <span style="font-style: italic">E. coli</span> cells expressing TraI protein produce a practical amount of C8. <br>
To achieve this goal, we constructed two types of E. coli. One is the “Sender” E. coli which produces AHL and the other is the “Reporter” E. coli which expresses GFP in the presence of AHL.<br>
+
To this end, two <span style="font-style: italic">E. coli</span> strains were constructed; one is the “Sender” strain which produces C8 and the other is the “Reporter” strain which expresses GFP in the presence of C8.<br>
To begin with, we evaluated whether “Reporter” cell could express GFP dependent on AHL by culturing them in liquid LB medium containing various concentrations of AHL (0.1nM - 1000nM).<br>
+
To begin with, it was investigated whether the “Reporter” cells expressed GFP when cultured in the medium containing various concentrations of C8 (0.1 nM -1000 nM).<br>
Then we confirmed whether the “Sender” could produce AHL. The supernatant of the “Sender” cell’s medium was added into the medium of “Reporter” cells and the production of AHL was confirmed by the expression of GFP from the “Reporter” cells.<br>  
+
In the previous similar experiment, the intensities of GFP fluorescence (Relative Fluorescence Units; RFU) have shown to follow Hill's equation (2). Therefore, in this study, the parameters of Hill's equation were obtained from the data and the concentrations of AHL were calculated from the values of RFU. <br>
Following plasmids were introduced into E. coli. <br>
+
Then, the ability of the Sender to produce AHL was analyzed. The supernatant of the Sender was mixed with the actively growing culture of the Reporter, and the production of AHL was evaluated by observing the expression of GFP.<br>
Reporter<br>
+
<br>
Fig. 1で示したプラスミドをE.coliのDH5α株にダブルトラフォメすることで、E.coliが3OC8AHLシグナルや3OC6AHLシグナルに反応してGFPを生産するようになる。<br>
+
The following plasmids were introduced into <span style="font-style: italic">E. coli</span>. <br>
 +
Reporter <span style="font-style: italic">E. coli</span><br>
 +
By introducing the plasmids shown in Fig. 2, <span style="font-style: italic">E. coli</span> cells are expected to produce GFP in response to C8 and C6. Note that Ptet is the constitutive promoter. Also, note that LuxR can accept C8 as well as the natural ligand, C6 (3); we here employed LuxR, but not TraR, because LuxR had been characterized far better than TraR in the preceding iGEM projects.
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
<figure>
 
<figure>
     <img src="https://static.igem.org/mediawiki/2017/2/25/T--TokyoTech--Construct1.jpg" style="max-width:50%">
+
     <img src="https://static.igem.org/mediawiki/2017/5/51/Fig2_structure_of_the_plasmid.png" style="max-width:75%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.1Construction of LuxR gene and Plux-gfp gene</figcaption>
+
     <figcaption style="font-size: 16px">Fig. 2 Structure of the plasmids used for creating the “Reporter”</figcaption>
 
     </figure>
 
     </figure>
 
+
</div>
<figure>
+
    <p style="font-size: 16px; text-indent:1em">
 
<br>
 
<br>
Sender<br>
+
Sender <span style="font-style: italic">E.coli</span> <br>
Fig. 2 に示したように、恒常プロモーターであるPtetの下流にTraIをつなぐことによって、常に3OC8AHLを合成するE.coliを作ることができる。<br>
+
We created the Sender by introducing the plasmid shown in Fig. 3.<br>
 +
The Sender is expected to produce C8 constantly, because the <span style="font-style: italic">traI</span> gene is placed at downstream of the constitutive promoter, Ptet.
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
<figure>
 
<figure>
     <img src="https://static.igem.org/mediawiki/2017/d/d8/T--TokyoTech--Construct3.jpg" style="max-width:50%">
+
     <img src="https://static.igem.org/mediawiki/2017/2/23/Fig3_construction_of_TraI_gene3.png" style="max-width:50%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.2 Construction of TraI gene</figcaption>
+
     <figcaption style="font-size: 16px">Fig. 3 Construction of TraI gene</figcaption>
 
     </figure>
 
     </figure>
 
+
</div>
<figure>
+
 
     </p>
 
     </p>
 
   </div>
 
   </div>
 
<hr>
 
<hr>
 +
  
 
<div class="w3-container" id="results" style="margin-top:20px">
 
<div class="w3-container" id="results" style="margin-top:20px">
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h1><!-- 小見出し -->
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h1><!-- 小見出し -->
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
    <p style="font-family: Poppins;font-size: 16px">
+
    <p style="font-size: 16px; text-indent:1em">
LuxR protein is a receptorfor C6 signals. However, previous study (文献) showed that it can also bind to other kinds of AHL, such as C10 .<br>
+
Assay using reagent AHLs<br>
We confirmed that LuxR could also respond to C8 signals  as sensitive as respoding of C6 signals. Receiver E.coli’s RFU (Reletive Fluoroscent Units) in each AHL concentration (0.01 nM ? 1000 nM) is shown in Figure . <br>
+
In order to analyze the ability of the Reporter to receive AHLs and to express GFP depending on AHL, defined concentrations of reagent AHLs were added to growing culture of the Reporter. It was confirmed that LuxR responded to C8 in a similar level to C6. RFU of the Reporter at various AHL concentrations (0.1 nM - 1000 nM) is shown in Fig. 4. Detection limit was over 10 nM for both cases. The C8 concentration 0 means adding DMSO (solvent for AHLs is DMSO).
Detection limit was over 10nM in case of C6 and C8. RFU valueswere almost same over 100nM.  
+
</p>
    </p>
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
    <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
<figure>
    <figure>
+
     <img src="https://static.igem.org/mediawiki/2017/9/95/T--TokyoTech--TraIfigure1.jpg" style="max-width:100%">
     <img src="https://static.igem.org/mediawiki/2017/9/95/T--TokyoTech--TraIfigure1.jpg="max-width:50%">
+
     <figcaption style="font-size: 16px">Fig. 4 Concentration dependance of Reletive Fluoroscent Units </figcaption>
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.3 Concentration dependance of <br>Reletive Fluoroscent Units </figcaption>
+
 
     </figure>
 
     </figure>
     <p style="font-family: Poppins;font-size: 16px">
+
</div>
Error bar have a same width as standard deviation (n=3).
+
     <p style="font-size: 16px; text-indent:1em">
    </p>
+
The data are presented as mean ± SD from triplicate experiments.<br>
 +
<br>
 +
Based on the data which is shown in Fig. 4, parameter was obtained to fit Hill’s equation.<br>
 +
Hill’s equation is shown in Eq. 1
 +
</p>
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 
<figure>
 
<figure>
     <img src="https://static.igem.org/mediawiki/2017/9/95/T--TokyoTech--TraIfigure1.jpg" style="max-width:50%">
+
     <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--TraIimprove10.png" style="max-width:100%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.4 Theoretical formula </figcaption>
+
     <figcaption style="font-size: 16px">Eq.1 Hill's equation  </figcaption>
 
     </figure>
 
     </figure>
    </div>
+
</div>
+
<p style="font-size: 16px; text-indent:1em">
 
+
The values of parameters are shown in Table. 1<br>
    <p style="font-family: Poppins;font-size: 16px">
+
The parameter “a” represents leakiness of the GFP expression in the Reporter. Even in the absence of AHL, it is known that downstream genes below Plux are transcribed slightly. The parameter “b” is the value of RFU when AHL binds to all receptors and is completely induced. The parameter “n“ is the Hill coefficient, and when this value is 1 or more, it is said that there are multiple binding sites. “Km” is the AHL concentration where half of the receptor molecules are bound to the AHL molecules, and this value represent the detection sensitivity of the Reporter. It was found that both AHLs can be detected with a sensitivity of order 10 nM. <br>
 +
</p>
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 +
<figure>
 +
    <figcaption style="font-size: 16px">Table. 1 Parameters of Hill’s equation </figcaption>
 +
<img src="https://static.igem.org/mediawiki/2017/1/1c/T--TokyoTech--Table1000.png" style="max-width:75%">
 +
    </figure>
 +
</div>
 +
<p style="font-size: 16px; text-indent:1em">
 +
The values of parameters are shown in Table. 1<br>
 +
The parameter “a” represents leakiness of the GFP expression in the Reporter. Even in the absence of AHL, it is known that downstream genes of Plux are transcribed slightly. The parameter “b” is the value of RFU when AHL binds to all receptors and is completely induced. The parameter “n“ is the Hill coefficient, and when this value is 1 or more, it is said that there are multiple binding sites. “Km” is the AHL concentration where half of the receptor molecules is bound to the AHL molecules, and this value represent the detection sensitivity of the Reporter. It was found that both AHLs can be detected with a sensitivity of order 10 nM. <br>
 +
</p>
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 +
<figure>
 +
    <img src="https://static.igem.org/mediawiki/2017/a/a7/T--TokyoTech--TraIfigure2.jpg" style="max-width:50%">
 +
     <figcaption style="font-size: 16px">Fig. 5 Actual measurement value and Theoretical formula </figcaption>
 +
    </figure>
 +
</div>
 +
    <p style="font-size: 16px; text-indent:1em">
 +
<br>
 
Supernatant Assay <br>
 
Supernatant Assay <br>
 
Temperature dependence of AHL production. <br>
 
Temperature dependence of AHL production. <br>
We found that Amount of C8 production is depend on  temperature. RFU was 14 folds larger than DH5α. <br>
+
During the trial-and-error process for increasing the productivity of AHL in the Sender, we found that the amount of C8 was higher when the Sender was grown at a lower temperature; the RFU value was 14-fold higher. <br>
 
+
<span style="font-style: italic">E. coli</span> introduced an empty vector was used as Negative Control.<br>
    </p>
+
C8 concentrations were calculated from the RFU values using calibration curve, 34 nM of C8 was produced in the 37℃ culture, whereas C8 concentration exceeded the detection limit in the 25℃ culture.
 
+
</p>
        <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">  
    <figure>
+
<figure>
 
     <img src="https://static.igem.org/mediawiki/2017/4/46/T--TokyoTech--TraIfigure3.jpg" style="max-width:50%">
 
     <img src="https://static.igem.org/mediawiki/2017/4/46/T--TokyoTech--TraIfigure3.jpg" style="max-width:50%">
     <figcaption style="font-family: Poppins;font-size: 16px">Fig.5 Temperature dependancies of 3OC8AHL production</figcaption>
+
     <figcaption style="font-size: 16px">Fig. 6 Temperature dependency of C8 production</figcaption>
 
     </figure>
 
     </figure>
    </div>
+
</div>
 
+
</p>
 
+
 
+
 
+
 
   </div>
 
   </div>
 +
<hr>
  
<hr>
 
  
 
<div class="w3-container" id="results" style="margin-top:20px">
 
<div class="w3-container" id="results" style="margin-top:20px">
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Discussion</b></h1>
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Discussion</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
    <p style="font-family: Poppins;font-size: 16px">
+
  <p style="font-size: 16px; text-indent:1em">
We confirmed that E. coli can produce uuu μM. However previous study (文献) showed that 20μM of C8 is required to activate the target gene in human cells.Therefore, we need further improvement of C8 production.<br>
+
We confirmed that <span style="font-style: italic">E. coli</span> cells produces over 200 nM of C8. However, as shown in other wiki pages (Read <a href="https://2017.igem.org/Team:TokyoTech/Description">Project Description</a> page and Read <a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor">Chimeric Transcription Factor Assay</a> page), the final objective of our project is inducing gene expression with C8 in human cells. From the <a href=https://2017.igem.org/Team:TokyoTech/Model>Simulation</a>, more C8 was required to do so. Therefore, we need to improve the production amount of C8 further. <br>
Result of Figure.5 shows temperature dependancies of 3OC8AHL production. TraI is derived from soil microorganism A. Tumefaciens. It is rarely happen that Temperature of the soil rise above 37 ℃. Therefore it is considered that TraI protein does not work properly above 37℃. <br>
+
The result in Fig. 5 shows that temperature dependency of C8 production. This result may reflect that the <span style="font-style: italic">traI</span> gene is derived from a soil bacterium <span style="font-style: italic">A. tumefaciens</span>; in nature, the temperature of soil hardly reaches  37 ℃, and the TraI protein may be unstable at 37℃. Indeed, growth of <span style="font-style: italic">A. tumefaciens</span> occurs optimally at 28°C, and at above 30°C, <span style="font-style: italic">A. tumefaciens</span> becomes heat-shock state (5).<br>
 
+
 
+
 
     </p>
 
     </p>
 
 
</div>
 
</div>
 +
  
 
<hr>
 
<hr>
  
<div class="w3-container" id="results" style="margin-top:20px">
+
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b> Material and Methods</b></h1>
+
  <div id="mtt" class="w3-container" id="overview" style="margin-top:20px">
 +
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b> Appendix: Material and Method</b></h2>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">
+
      <center>
Reagent assay<br>
+
     <object data="https://static.igem.org/mediawiki/2017/9/9d/TraI_assay_3.pdf" type="application/pdf" style="width: 70%; height: 800px"></object>
1. Cultivate Receiver E.coli in LB medium containing antibiotics for about 15hours<br>
+
    </center>
2. Dilute the culture to 1/200 with flesh LB medium containing antibiotics<br>
+
    </div>
3. Incubate the flesh culture for 2 hours<br>
+
4. Mix 495μL of the culture with 5μL of DMSO solution (each DMSO is containing 100 microM,10microM...of AHL to reach final concentration 1microM 100nM...) in micro tube<br>
+
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃ <br>
+
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm) and absorbance (Measurement wavelength is 600nm) Supernatant assay<br>
+
Supernatant Assay<br>
+
1. Cultivate Sender E.coli in LB medium for about 15hours<br>
+
2. Centrifuge the culture 16,000rpm and 5minutes<br>
+
3. Follow Reagent assay process (1~4) and Prepare Reporter culture.<br>
+
4. Mix 250μL of sender culture’s supernatant with Reporter culture in micro tube.<br>
+
5. Incubate the micro tube for 5 hours with Small shaking incubator in 37℃<br>
+
6. Take 100μL of culture and Measure fluorescent (excitation wave length is 495nm, Measurement wavelength is 520nm gain is 45) and absorbance (Measurement wavelength is 600nm)<br>
+
  
    </p>
 
 
<hr>
 
<hr>
 +
  
 
<div class="w3-container" id="results" style="margin-top:20px">
 
<div class="w3-container" id="results" style="margin-top:20px">
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Reference</b></h1>
 
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Reference</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
     <p style="font-family: Poppins;font-size: 16px">参考文献
+
     <p style="font-size: 16px">
 +
(1). Neddermann P1, Gargioli C, Muraglia E, Sambucini S, Bonelli F, De Francesco R, Cortese R (2003) A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep. 2003 Feb;4(2):159-65.<br>
 +
(2). https://2014.igem.org/Team:ETH_Zurich/modeling/qs<br>
 +
(3). https://2016.igem.org/Team:Tokyo_Tech/AHL_Assay/AHL_Reporter_Assay <br>
 +
(4). Elise R. Morton and Clay Fuqua (2012) UNIT 3D.1 Laboratory Maintenance of Agrobacterium. Curr Protoc Microbiol. 2012 Feb; CHAPTER: Unit3D.1.<br>
 +
 
 
     </p>
 
     </p>
  
 
</div><!-- ここまでが編集可能範囲 -->
 
</div><!-- ここまでが編集可能範囲 -->
 +
</div>
  
 +
<div class="w3-container" id="contact" style="margin-top:20px">
 +
<p id="pageTop" style="text-align:right"><a href="#wrap"><img src="https://static.igem.org/mediawiki/2017/0/0d/T--TokyoTech--page_top_2.png" style="width:200px"></a></p>
 
</div>
 
</div>
  
<hr>
+
<!-- W3.CSS Container -->
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p></div>
+
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right"><a href="http://96haji.me/" title="W3.CSS" target="_blank" class="w3-hover-opacity">Hajime Fujita with W3.CSS: All Rights Reserved</a></p></div>
  
 +
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
 
<script>
 
<script>
 
// Script to open and close sidebar
 
// Script to open and close sidebar
Line 203: Line 318:
 
     document.getElementById("myOverlay").style.display = "none";
 
     document.getElementById("myOverlay").style.display = "none";
 
}
 
}
 
+
</script>
 +
<script>
 
// Modal Image Gallery
 
// Modal Image Gallery
 
function onClick(element) {
 
function onClick(element) {
Line 211: Line 327:
 
   captionText.innerHTML = element.alt;
 
   captionText.innerHTML = element.alt;
 
}
 
}
 +
$(function() {
 +
  var h = $(window).height();
 +
 +
  $('#wrap').css('display','none');
 +
  $('#loader-bg ,#loader').height(h).css('display','block');
 +
});
 +
 +
$(window).load(function () { //全ての読み込みが完了したら実行
 +
  $('#loader-bg').delay(900).fadeOut(800);
 +
  $('#loader').delay(600).fadeOut(300);
 +
  $('#wrap').css('display', 'block');
 +
});
 
</script>
 
</script>
 +
<script>
 +
//■page topボタン
 +
$(function(){
 +
var topBtn=$('#pageTop');
 +
topBtn.hide();
 +
 +
//◇ボタンの表示設定
 +
$(window).scroll(function(){
 +
  if($(this).scrollTop()>80){
 +
    //---- 画面を80pxスクロールしたら、ボタンを表示する
 +
    topBtn.fadeIn();
 +
  }else{
 +
    //---- 画面が80pxより上なら、ボタンを表示しない
 +
    topBtn.fadeOut();
 +
  }
 +
});
 +
 +
// ◇ボタンをクリックしたら、スクロールして上に戻る
 +
topBtn.click(function(){
 +
  $('body,html').animate({
 +
  scrollTop: 0},500);
 +
  return false;
 +
});
 +
 +
});
 +
</script>
 +
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 00:11, 2 November 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech

TraI Assay


Introduction


Quorum sensing is the cell-to-cell communication system used by a variety of bacteria to detect the population of cells around them. The system consists of three procedure: production of signal molecules, sensing the molecules, and responding to the signals. 3OC6HSL (C6), derived from Vibrio fischeri, and 3OC8HSL (C8), derived from Agrobacterium fumigatus, are the most used signal molecules in the system and produced by LuxI and TraI proteins, respectively. C6 and C8 are the compounds called acyl-homoserine lactone (AHL) and chemical structures of these molecules are shown in Fig. 1.

Fig. 1 Chemical structures of AHL-type signal molecules

The production of C6 by LuxI is constitutive and C6 can be sensed by an intracellular receptor, LuxR, in other cells. The complex of LuxR and C6 forms the homodimer and promotes the activation of corresponding promoter, lux promoter, and the transcription of downstream genes. It should be noted that LuxI is encoded by one of those genes, meaning that the production of C6 molecules is promoted by receiving C6 molecules. Therefore, as the population of bacteria grows, the production of C6 is amplified and the expression of the target genes will increase exponentially. As a consequence, bacterial cells can sense their population density and carry out cell-density specific behaviors such as luminescence emission and pathogenicity exerting.

A similar mechanism presents for C8 molecule, and in this case, the TraR protein is the receptor of the molecule.

In a previous study, an AHL-inducible eukaryotic gene expression system was developed based on TraR (1). In this system, expression from the eukaryotic promoter (CMV minimal promoter) is induced only in the presence of C8. Therefore, we here chose C8 as a signal molecule and tried to engineer E. coli cells to produce C8.


Summary of experiment


In this section, we investigated whether E. coli cells expressing TraI protein produce a practical amount of C8.
To this end, two E. coli strains were constructed; one is the “Sender” strain which produces C8 and the other is the “Reporter” strain which expresses GFP in the presence of C8.
To begin with, it was investigated whether the “Reporter” cells expressed GFP when cultured in the medium containing various concentrations of C8 (0.1 nM -1000 nM).
In the previous similar experiment, the intensities of GFP fluorescence (Relative Fluorescence Units; RFU) have shown to follow Hill's equation (2). Therefore, in this study, the parameters of Hill's equation were obtained from the data and the concentrations of AHL were calculated from the values of RFU.
Then, the ability of the Sender to produce AHL was analyzed. The supernatant of the Sender was mixed with the actively growing culture of the Reporter, and the production of AHL was evaluated by observing the expression of GFP.

The following plasmids were introduced into E. coli.
Reporter E. coli
By introducing the plasmids shown in Fig. 2, E. coli cells are expected to produce GFP in response to C8 and C6. Note that Ptet is the constitutive promoter. Also, note that LuxR can accept C8 as well as the natural ligand, C6 (3); we here employed LuxR, but not TraR, because LuxR had been characterized far better than TraR in the preceding iGEM projects.

Fig. 2 Structure of the plasmids used for creating the “Reporter”


Sender E.coli
We created the Sender by introducing the plasmid shown in Fig. 3.
The Sender is expected to produce C8 constantly, because the traI gene is placed at downstream of the constitutive promoter, Ptet.

Fig. 3 Construction of TraI gene


Results


Assay using reagent AHLs
In order to analyze the ability of the Reporter to receive AHLs and to express GFP depending on AHL, defined concentrations of reagent AHLs were added to growing culture of the Reporter. It was confirmed that LuxR responded to C8 in a similar level to C6. RFU of the Reporter at various AHL concentrations (0.1 nM - 1000 nM) is shown in Fig. 4. Detection limit was over 10 nM for both cases. The C8 concentration 0 means adding DMSO (solvent for AHLs is DMSO).

Fig. 4 Concentration dependance of Reletive Fluoroscent Units

The data are presented as mean ± SD from triplicate experiments.

Based on the data which is shown in Fig. 4, parameter was obtained to fit Hill’s equation.
Hill’s equation is shown in Eq. 1

Eq.1 Hill's equation

The values of parameters are shown in Table. 1
The parameter “a” represents leakiness of the GFP expression in the Reporter. Even in the absence of AHL, it is known that downstream genes below Plux are transcribed slightly. The parameter “b” is the value of RFU when AHL binds to all receptors and is completely induced. The parameter “n“ is the Hill coefficient, and when this value is 1 or more, it is said that there are multiple binding sites. “Km” is the AHL concentration where half of the receptor molecules are bound to the AHL molecules, and this value represent the detection sensitivity of the Reporter. It was found that both AHLs can be detected with a sensitivity of order 10 nM.

Table. 1 Parameters of Hill’s equation

The values of parameters are shown in Table. 1
The parameter “a” represents leakiness of the GFP expression in the Reporter. Even in the absence of AHL, it is known that downstream genes of Plux are transcribed slightly. The parameter “b” is the value of RFU when AHL binds to all receptors and is completely induced. The parameter “n“ is the Hill coefficient, and when this value is 1 or more, it is said that there are multiple binding sites. “Km” is the AHL concentration where half of the receptor molecules is bound to the AHL molecules, and this value represent the detection sensitivity of the Reporter. It was found that both AHLs can be detected with a sensitivity of order 10 nM.

 
Fig. 5 Actual measurement value and Theoretical formula


Supernatant Assay
Temperature dependence of AHL production.
During the trial-and-error process for increasing the productivity of AHL in the Sender, we found that the amount of C8 was higher when the Sender was grown at a lower temperature; the RFU value was 14-fold higher.
E. coli introduced an empty vector was used as Negative Control.
C8 concentrations were calculated from the RFU values using calibration curve, 34 nM of C8 was produced in the 37℃ culture, whereas C8 concentration exceeded the detection limit in the 25℃ culture.

Fig. 6 Temperature dependency of C8 production


Discussion


We confirmed that E. coli cells produces over 200 nM of C8. However, as shown in other wiki pages (Read Project Description page and Read Chimeric Transcription Factor Assay page), the final objective of our project is inducing gene expression with C8 in human cells. From the Simulation, more C8 was required to do so. Therefore, we need to improve the production amount of C8 further.
The result in Fig. 5 shows that temperature dependency of C8 production. This result may reflect that the traI gene is derived from a soil bacterium A. tumefaciens; in nature, the temperature of soil hardly reaches 37 ℃, and the TraI protein may be unstable at 37℃. Indeed, growth of A. tumefaciens occurs optimally at 28°C, and at above 30°C, A. tumefaciens becomes heat-shock state (5).


Appendix: Material and Method



Reference


(1). Neddermann P1, Gargioli C, Muraglia E, Sambucini S, Bonelli F, De Francesco R, Cortese R (2003) A novel, inducible, eukaryotic gene expression system based on the quorum-sensing transcription factor TraR. EMBO Rep. 2003 Feb;4(2):159-65.
(2). https://2014.igem.org/Team:ETH_Zurich/modeling/qs
(3). https://2016.igem.org/Team:Tokyo_Tech/AHL_Assay/AHL_Reporter_Assay
(4). Elise R. Morton and Clay Fuqua (2012) UNIT 3D.1 Laboratory Maintenance of Agrobacterium. Curr Protoc Microbiol. 2012 Feb; CHAPTER: Unit3D.1.