Difference between revisions of "Team:Peking/Hardware/Microfluidics"

 
(32 intermediate revisions by 3 users not shown)
Line 2: Line 2:
  
 
<head>
 
<head>
 +
    <style>
 +
        .demo-card-image.mdl-card {
 +
 +
            align-items: center;
 +
            MARGIN-RIGHT: auto;
 +
            MARGIN-LEFT: auto;
 +
        !important;
 +
        }
 +
        .demo-card-image > .mdl-card__actions {
 +
            height: 52px;
 +
            padding: 16px;
 +
            background: rgba(0, 0, 0, 0.2);
 +
        }
 +
        .demo-card-image__filename {
 +
            color: #fff;
 +
            font-size: 14px;
 +
            font-weight: 500;
 +
        }
 +
    </style>
  
 
     <style>
 
     <style>
Line 33: Line 52:
 
             margin-bottom: 0px;
 
             margin-bottom: 0px;
 
         }
 
         }
 +
 +
        ol, ul{
 +
            list-style: none
 +
        }
 +
 +
        ol li:before {
 +
            content: counter(ol) ".";
 +
            counter-increment: ol;
 +
            color: #02A9F7;
 +
            text-align: right;
 +
            display: inline-block;
 +
            min-width: 1em;
 +
            margin-right: 0.5em
 +
        }
 +
 +
        ol ol {
 +
            margin-left: 1.25714em
 +
        }
 +
 +
        ol li {
 +
            text-indent: -1.95em;
 +
            line-height : 2em;
 +
        }
 +
 +
        .nonumberitem ul li {
 +
            text-indent: -0.65em;
 +
            line-height : 2em;
 +
        }
 +
 +
 +
 +
        .nonumberitem ul li:before {
 +
            content: "•";
 +
            color: #02A9F7;
 +
            display: inline-block;
 +
            margin-right: 0.3em;
 +
        !important;
 +
        }
 +
 +
        ul ul {
 +
            margin-left: 1.25714em
 +
        }
 +
  
 
     </style>
 
     </style>
Line 62: Line 124:
  
 
<!-- Always shows a header, even in smaller screens. -->
 
<!-- Always shows a header, even in smaller screens. -->
<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header">
+
<div class="mdl-layout mdl-js-layout mdl-layout--fixed-header" >
     <header class="mdl-layout__header">
+
     <header class="mdl-layout__header" style="position:fixed; margin-top: -7px; !important;">
 
         <div class="mdl-layout__header-row">
 
         <div class="mdl-layout__header-row">
 
             <!-- Title -->
 
             <!-- Title -->
Line 92: Line 154:
 
                 </style>
 
                 </style>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking">Home</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking">Home</a>
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Project">Project</a>
+
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Project#Introduction">Project</a>
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Model">Modelling</a>
+
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Model#Overview">Modelling</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Software">Software</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Software">Software</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Hardware"
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Hardware"
Line 99: Line 161:
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Lab">Lab</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Lab">Lab</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/HP">Practices</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/HP">Practices</a>
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Parts">Parts</a>
+
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Parts#Overview">Parts</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Team">Team</a>
 
                 <a class="mdl-navigation__link" href="https://2017.igem.org/Team:Peking/Team">Team</a>
 
             </nav>
 
             </nav>
Line 107: Line 169:
 
</div>
 
</div>
  
<main class="docs-layout-content mdl-layout__content mdl-color-text--grey-600"
+
<main class="docs-layout-content mdl-layout__content mdl-color-text--grey-600" style="width: 100%; padding-bottom: 0px; background-color: #FAFAFA;">
      style="width: 100%; padding-bottom: 0px; background-color: #FAFAFA;">
+
 
     <!-- Wide card with share menu button -->
 
     <!-- Wide card with share menu button -->
 
     <style>
 
     <style>
Line 135: Line 196:
 
             width: auto;
 
             width: auto;
 
         }
 
         }
 
 
         .demo-card-wide > .mdl-card__title {
 
         .demo-card-wide > .mdl-card__title {
 
             color: #fff;
 
             color: #fff;
             height: 230px;
+
             height: 360px;
 
         }
 
         }
 
 
         .demo-card-wide > .mdl-card__menu {
 
         .demo-card-wide > .mdl-card__menu {
 
             color: #fff;
 
             color: #fff;
Line 147: Line 206:
 
     </style>
 
     </style>
  
     <section class="mdl-components__page mdl-grid">
+
     <div class="demo-card-wide mdl-card mdl-shadow--2dp">
         <!-- Wide card with share menu button -->
+
         <div class="mdl-card__title" style="background: url('https://static.igem.org/mediawiki/2017/8/8e/Peking_Hardware_Microfluidics.png') center / cover; padding-left: 50px;">
        <style>
+
            <div class="mdl-card__title-text">
             .demo-card-wide.mdl-card {
+
                <h1 style="font-size: xx-large; color: white"><strong>Microfluidics</strong></h1>
 +
             </div>
 +
        </div>
  
                padding-top: 40px;
 
                margin-top: 80px;
 
                padding-left: 50px;
 
                padding-right: 30px;
 
                padding-bottom: 50px;
 
                width: auto;
 
  
            }
 
  
            .demo-card-wide > .mdl-card__title {
+
        <div class="mdl-card__supporting-text" style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 50px; padding-top: 50px; padding-bottom:50px">
                color: #fff;
+
            <section class="docs-toc docs-text-styling">
                 height: 176px;
+
                 <nav class="section-content">
 +
                    <ul style="margin-left: 0px;">
  
            }
 
  
            .demo-card-wide > .mdl-card__menu {
+
                        <li><a href="#hm1">Overview</a></li>
                color: #000;
+
            }
+
  
            .demo-card-wide > .mdl-card__supporting-text {
+
                        <li><a href="#hm2">Description</a></li>
                /*text-indent: 3em;*/
+
                color: rgba(0, 0, 0, 0.85);
+
                font-size: 1rem;
+
                line-height: 32px;
+
                font-family: "Roboto", "Helvetica", "Arial", sans-serif;
+
                text-align: justify;
+
            !important;
+
  
            }
+
                        <li><a href="#hm2.1"  style="padding-left: 20px;font-size: small">Seven-segment Display Microfluidic Chip</a></li>
        </style>
+
                        <li><a href="#hm2.2"  style="padding-left: 20px;font-size: small">Sand Clock Microfluidic Chip</a></li>
  
        <div class="demo-card-wide mdl-card mdl-shadow--2dp">
+
                        <li><a href="#hm3">Protocol</a></li>
  
            <div class="mdl-card__supporting-text">
+
                        <li><a href="#hm3.1"  style="padding-left: 20px;font-size: small">Fabrication of the Microfluidic Master Plate</a></li>
 +
                        <li><a href="#hm3.2"  style="padding-left: 20px;font-size: small">Chip Preparation</a></li>
 +
                        <li><a href="#hm3.3"  style="padding-left: 20px;font-size: small">Cell Preparation</a></li>
 +
                        <li><a href="#hm3.4"  style="padding-left: 20px;font-size: small">IPTG Synchronization</a></li>
 +
                        <li><a href="#hm3.5"  style="padding-left: 20px;font-size: small">Microscopy and Image Acquisition</a></li>
  
 +
                        </li>
  
                <h1>Microfluidics <br><br> <a class="mdl-chip">
+
                     </ul>
                     <span class="mdl-chip__text">Hardware</span>
+
                 </nav>
                 </a></h1><br>
+
            </section>
 +
            <br>
  
 +
            <h2 id="hm1">Overview</h2>
 +
            Microfluidics devices are applied to deal with flow of liquid inside micrometer-sized channels, and conduct continuous observation under fluorescence microscopy. This year, we designed two microfluidic chips --a sand-clock chip and a seven-segment display chip. The sand-clock microfluidic device is a "mother machine", which consists of dozens of thin channels holding single cells, and can be used to track
 +
            individual cell line for generations. And for the seven-segment display chip, cells were kept in chambers to observe fluorescence changes.
  
 +
            <br><br><br>
  
 +
            <h2 id="hm2">Description</h2>
  
                <section class="docs-toc docs-text-styling">
+
            <h3 id="hm2.1">Seven-segment Display Microfluidic Chip</h3>
                    <nav class="section-content">
+
                        <ul>
+
  
                            <li><a href="#lorem1">Description</a></li>
+
            <br>
  
                            <li><a href="https://getmdl.io/components/index.html#layout-section/grid">Description</a>
 
                            </li>
 
  
                            <li><a href="https://getmdl.io/components/index.html#layout-section/tabs">Description</a>
+
            <div class="mdl-grid mdl-grid--no-spacing" style="margin: 0px">
                             </li>
+
                <div class="mdl-cell mdl-cell--6-col">
 +
                    <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/0/0d/Peking_hardware_sevendesign.png') center / cover; height: 450px; width: 510px">
 +
                        <div class="mdl-card__title mdl-card--expand"></div>
 +
                        <div class="mdl-card__actions">
 +
                            <span class="demo-card-image__filename">The Design of  Seven-segment Display</span>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
                <div class="mdl-cell mdl-cell--6-col">
 +
                    <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/4/4e/Peking_hardware_fig2_seven_segment.jpeg') center / cover; height: 450px; width: 510px">
 +
                        <div class="mdl-card__title mdl-card--expand"></div>
 +
                        <div class="mdl-card__actions">
 +
                             <span class="demo-card-image__filename">The Photo of  Seven-segment Display</span>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
  
                            <li><a href="https://getmdl.io/components/index.html#layout-section/footer">Description</a>
 
                            </li>
 
  
                        </ul>
+
            <br><br>
                    </nav>
+
            The seven-segment display microfluidic chip consists of four distinct regions. Each region has several chambers which can be filled with different bacteria strains. Narrow fences were set between chambers to reduce flow resistance. The medium can be introduced to the chamber through three inlets. The inlets were designed to have concentric fences to avoid impurity obstructing feeding channel.
                </section>
+
            Different inlets connecting the same region were used to insert medium containing different inducer.
 +
            <br><br>
  
                <h1>How to install MDL</h1>
+
            <br>
                 <h2>How to install MDL</h2>
+
            <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/4/49/Peking_hardware_sevendemo.png') center / cover; height: 590px; width: 780px">
                 <h3>How to install MDL</h3>
+
                 <div class="mdl-card__title mdl-card--expand"></div>
                <h4>How to install MDL</h4>
+
                 <div class="mdl-card__actions">
                 <h5>How to install MDL</h5>
+
                    <span class="demo-card-image__filename">The Demonstration of Seven-segment Display</span>
                <h6>How to install MDL</h6>
+
                 </div>
                <h7>How to install MDL</h7>
+
            </div>
 +
            <br>
 +
            Altogether the chip can show 1,2 and 3 pattern as a seven-segment display, when we filling the four distinct regions with our strains in the control unit.
  
                Cillum dolor esse sit incididunt velit eiusmod magna ad nostrud officia aute dolor dolor. Magna
 
                esse
 
                ullamco pariatur adipisicing consectetur eu commodo officia. Ex cillum consequat mollit minim
 
                elit
 
                est deserunt occaecat nisi amet. Quis aliqua nostrud Lorem occaecat sunt. Eiusmod quis amet
 
                ullamco
 
                aliquip dolore ut incididunt duis adipisicing. Elit consequat nisi eiusmod aute ipsum sunt
 
                veniam do
 
                est. Occaecat mollit aliquip ut proident consectetur amet ex dolore consectetur aliqua elit.
 
                Commodo nisi non consectetur voluptate incididunt mollit duis dolore amet amet tempor
 
                exercitation.
 
                Qui amet aute ea aute id ad aliquip proident. Irure duis qui labore deserunt enim in quis nisi
 
                sint
 
                consequat aliqua. Ex proident labore et laborum tempor fugiat sint magna veniam minim. Nulla
 
                dolor
 
                labore adipisicing in enim mollit laboris fugiat eu. Aliquip minim cillum ullamco voluptate non
 
                dolore non ex duis fugiat duis ad. Deserunt cillum ad et nisi amet non voluptate culpa qui do.
 
                Labore ullamco et minim proident est laborum mollit ad labore deserunt ut irure dolore.
 
                Reprehenderit ad ad irure ut irure qui est eu velit eu excepteur adipisicing culpa. Laborum
 
                cupidatat ullamco eu duis anim reprehenderit proident aute ad consectetur eiusmod.
 
                <br><br>
 
  
                Tempor tempor aliqua in commodo cillum Lorem<br><br> magna dolore proident Lorem. Esse ad
 
                consequat
 
                est excepteur irure eu irure quis aliqua qui. Do mollit esse veniam excepteur ut veniam anim
 
                minim
 
                dolore sit commodo consequat duis commodo. Sunt dolor reprehenderit ipsum minim eiusmod eu
 
                consectetur anim excepteur eiusmod. Duis excepteur anim dolor sit enim veniam deserunt anim
 
                adipisicing Lorem elit. Cillum sunt do consequat elit laboris nisi consectetur.
 
  
                <h3 id="lorem1">Basic MDL Usage</h3>
 
  
                Cillum dolor esse sit incididunt velit eiusmod magna ad nostrud officia aute dolor dolor. Magna
+
            <br><br>
                esse
+
            <h3 id="hm2.2">Sand Clock Microfluidic Chip</h3>
                ullamco pariatur adipisicing consectetur eu commodo officia. Ex cillum consequat mollit minim
+
            <br>
                 elit
+
            <div class="mdl-grid mdl-grid--no-spacing" style="margin: 0px">
                est deserunt occaecat nisi amet. Quis aliqua nostrud Lorem occaecat sunt. Eiusmod quis amet
+
                 <div class="mdl-cell mdl-cell--6-col">
                ullamco
+
                    <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/e/ef/Peking_hardware_sandclockdesign.png') center / cover; height: 300px; width: 500px">
                aliquip dolore ut incididunt duis adipisicing. Elit consequat nisi eiusmod aute ipsum sunt
+
                        <div class="mdl-card__title mdl-card--expand"></div>
                 veniam do
+
                        <div class="mdl-card__actions">
                 est. Occaecat mollit aliquip ut proident consectetur amet ex dolore consectetur aliqua elit.
+
                            <span class="demo-card-image__filename">The Design of Sand-clock Chip</span>
 +
                        </div>
 +
                    </div>
 +
                 </div>
 +
                 <div class="mdl-cell mdl-cell--6-col">
 +
                    <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/c/cf/Peking_hardware_fig6_sandclock.jpeg') center / cover; height: 300px; width: 660px">
 +
                        <div class="mdl-card__title mdl-card--expand"></div>
 +
                        <div class="mdl-card__actions">
 +
                            <span class="demo-card-image__filename">The Photo of Sand-clock Chip</span>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
  
 +
            <br><br>
 +
            The sand clock chip contains seven regions, and each region has its own feeding channel connecting with inlet and outlet. Thin channels housing single cell are located at the central parts of feeding channels.
 +
            This sand clock microfluidic chip can be used to track individual cells of different strains at the same time.
 +
            <br><br><br>
  
                Commodo nisi non consectetur voluptate incididunt mollit duis dolore amet amet tempor
+
            <div class="demo-card-image mdl-card mdl-shadow--2dp" style="background: url('https://static.igem.org/mediawiki/2017/9/93/Peking_hardware_sandclockdemo.png') center / cover; height: 600px; width: 720px">
                exercitation.
+
                 <div class="mdl-card__title mdl-card--expand"></div>
                Qui amet aute ea aute id ad aliquip proident. Irure duis qui labore deserunt enim in quis nisi
+
                 <div class="mdl-card__actions">
                 sint
+
                    <span class="demo-card-image__filename">The Demonstration of Sand-clock Chip</span>
                 consequat aliqua. Ex proident labore et laborum tempor fugiat sint magna veniam minim. Nulla
+
                 </div>
                dolor
+
            </div>
                 labore adipisicing in enim mollit laboris fugiat eu. Aliquip minim cillum ullamco voluptate non
+
            <br>
                dolore non ex duis fugiat duis ad. Deserunt cillum ad et nisi amet non voluptate culpa qui do.
+
            If cells in different feeding channels are designed to give out fluorescence in order, the chip can show a sand-clock pattern.
                Labore ullamco et minim proident est laborum mollit ad labore deserunt ut irure dolore.
+
                Reprehenderit ad ad irure ut irure qui est eu velit eu excepteur adipisicing culpa. Laborum
+
                cupidatat ullamco eu duis anim reprehenderit proident aute ad consectetur eiusmod.
+
  
  
                Cillum dolor esse sit incididunt velit <br><br>eiusmod magna ad nostrud officia aute dolor
 
                dolor.
 
                Magna esse ullamco pariatur adipisicing consectetur eu commodo officia. Ex cillum consequat
 
                mollit
 
                minim elit est deserunt occaecat nisi amet. Quis aliqua nostrud Lorem occaecat sunt. Eiusmod
 
                quis
 
                amet ullamco aliquip dolore ut incididunt duis adipisicing. Elit consequat nisi eiusmod aute
 
                ipsum
 
                sunt veniam do est. Occaecat mollit aliquip ut proident consectetur amet ex dolore consectetur
 
                aliqua elit.
 
  
                Commodo nisi non consectetur voluptate incididunt mollit duis dolore amet amet tempor
 
                exercitation.
 
                Qui amet aute ea aute id ad aliquip proident. Irure duis qui labore deserunt enim in quis nisi
 
                sint
 
                consequat aliqua. Ex proident labore et laborum tempor fugiat sint magna veniam minim. Nulla
 
                dolor
 
                labore adipisicing in enim mollit laboris fugiat eu. Aliquip minim cillum ullamco voluptate non
 
                dolore non ex duis fugiat duis ad. Deserunt cillum ad et nisi amet non voluptate culpa qui do.
 
                Labore ullamco et minim proident est laborum mollit ad labore deserunt ut irure dolore.
 
                Reprehenderit ad ad irure ut irure qui est eu velit eu excepteur adipisicing culpa. Laborum
 
                cupidatat ullamco eu duis anim reprehenderit proident aute ad consectetur eiusmod.
 
  
                Cillum dolor esse sit incididunt velit eiusmod magna ad nostrud officia aute dolor dolor. Magna
 
                esse
 
                ullamco pariatur adipisicing consectetur eu commodo officia. Ex cillum consequat mollit minim
 
                elit
 
                est deserunt occaecat nisi amet. Quis aliqua nostrud Lorem occaecat sunt. Eiusmod quis amet
 
                ullamco
 
                aliquip dolore ut incididunt duis adipisicing. Elit consequat nisi eiusmod aute ipsum sunt
 
                veniam do
 
                est. Occaecat mollit aliquip ut proident consectetur amet ex dolore consectetur aliqua elit.
 
  
                Commodo nisi non consectetur voluptate <br><br>incididunt mollit duis dolore amet amet tempor
 
                exercitation. Qui amet aute ea aute id ad aliquip proident. Irure duis qui labore deserunt enim
 
                in
 
                quis nisi sint consequat aliqua. Ex proident labore et laborum tempor fugiat sint magna veniam
 
                minim. Nulla dolor labore adipisicing in enim mollit laboris fugiat eu. Aliquip minim cillum
 
                ullamco
 
                voluptate non dolore non ex duis fugiat duis ad. Deserunt cillum ad et nisi amet non voluptate
 
                culpa
 
                qui do. Labore ullamco et minim proident est laborum mollit ad labore deserunt ut irure dolore.
 
                Reprehenderit ad ad irure ut irure qui est eu velit eu excepteur adipisicing culpa. Laborum
 
                cupidatat ullamco eu duis anim reprehenderit proident aute ad consectetur eiusmod.
 
  
             </div>
+
             <br><br><br>
             <!--<div class="mdl-card__actions mdl-card--border">
+
            <h2 id="hm3">Protocol</h2>
                 <a class="mdl-button mdl-button--colored mdl-js-button mdl-js-ripple-effect">
+
 
                    Get Started
+
             <h3 id="hm3.1">Fabrication of the Microfluidic Master Plate</h3>
                </a>
+
            Fabrication of the E. coli mother machine was carried out using standard UV photolithography in a clean-room environment. The device was designed using L Edit and quartz-chrome photomasks.<br><strong> Note:</strong> for all spin coater steps described below, the following shorthand notation is used: speed (rpm)/acceleration (rpm/sec)/time (sec).<br>
             </div>-->
+
            <br>
             <div class="mdl-card__menu">
+
            <h4>First Layer: Cell Channels</h4>
                 <button class="mdl-button mdl-button--icon mdl-js-button mdl-js-ripple-effect">
+
            This set of steps lays down the channels that house the cells in the final device. The tolerances for this layer are very stringent; the exposure dose and contact between mask and wafer must be opti-mized. We recommend trying out a range of exposure parameters to ensure that a useful device is obtained. We also stress the importance of the very long post-exposure baking time in the process below.<br>
                    <i class="material-icons">star</i>
+
            <ol start="1">
                 </button>
+
                <script type="text/javascript">
             </div>
+
                    (function () {
 +
 
 +
                        var doc_ols = document.getElementsByTagName("ol");
 +
 
 +
                        for (i = 0; i < doc_ols.length; i++) {
 +
 
 +
                            var ol_start = doc_ols[i].getAttribute("start") - 1;
 +
                            doc_ols[i].setAttribute("style", "counter-reset:ol " + ol_start + ";");
 +
 
 +
                        }
 +
 
 +
                    })();
 +
                </script>
 +
                <li>Place a new 3'' Si wafer (we used 380 &mu;m TEST-grade wafers from University Wafer) in a dish of fresh acetone. Sonicate at high power for 5 minutes.</li>
 +
                <li>Sequentially rinse the wafer with streams of methyl alcohol (MeOH), isopropyl alcohol (IPA) and H<SUB>2</SUB>O (10 seconds per solvent).</li>
 +
                <li>Place the wafer on a 2'' spin chuck and spin a few seconds at 500 rpm. </li>
 +
                <li>While spinning, sequentially rinse the wafer with streams of MeOH, IPA and H<SUB>2</SUB>O. </li>
 +
                <li>Spin the wafer for 1 minute at 3 000 rpm to dry. </li>
 +
                <li>Dehydrate the wafer with the smooth side upwards above clean filter paper for 5 minutes on a hot plate set to 190&#8451;, then cool it at r.t.</li>
 +
                <li>Place the dehydrated wafer onto the spin-coater chuck and dispense a small (cover &sim;2/3 of the wafer surface) amount of Su8 3005 photoresist (Microchem) using a disposable pipette. Run the spin pro-gram (Set spin program to: Step 1: 500/100/10, Step 2: 1400/300/36). This should result in a coat of &sim;1.5 &mu;m.</li>
 +
                 <li>Soft-bake the wafer for 2 minutes at 95&#8451;. </li>
 +
                <li>Expose the wafer for 40&sim;50 seconds (3.7 mW/cm<sup>2</sup>) through the cell-channel mask in vacuum contact mode.</li>
 +
                <li>Post exposure, bake the wafer (in order) for 2 minutes at 95&#8451; (according to the thickness of this layer), then cool it at r.t.</li>
 +
            </ol>
 +
            <br>
 +
            <h4>Second Layer: Feeding Channels</h4>
 +
            This layer of the device forms the culture-medium flow channels. The dimensions of these features are not critical: we have used feeding channels of widely varying dimension to similar effect. The alignment is sensitive to large errors, however. The alignment between the feeding channels and cell channels must be accurate (down to a couple of microns) in order to ensure that the cell channels are of the desired final length.<br>
 +
            <ol start="1">
 +
                <script type="text/javascript">
 +
                    (function () {
 +
 
 +
                        var doc_ols = document.getElementsByTagName("ol");
 +
 
 +
                        for (i = 0; i < doc_ols.length; i++) {
 +
 
 +
                            var ol_start = doc_ols[i].getAttribute("start") - 1;
 +
                            doc_ols[i].setAttribute("style", "counter-reset:ol " + ol_start + ";");
 +
 
 +
                        }
 +
 
 +
                    })();
 +
                </script>
 +
                <li>Set the spin program to: Step 1: 500/100/10, Step 2:1200/300/40.</li>
 +
                <li>Place the wafer onto the spin-coater chuck and dispense a small  amount of Su8 3005 photoresist (cover &sim;2/3 of the wafer surface) with a pipette being careful not to introduce bubbles. Run the spin program. This should result in a coat of - 9 &mu;m.</li>
 +
                <li>Soft-bake the wafer (in order) for 8 min at 95&#8451;.</li>
 +
                <li>With an Su8-developer-soaked swab, clean the newly-deposited photoresist off the alignment marks to make them visible for the alignment process.</li>
 +
                <li>Align the feeding channel mask to the alignment marks on the wafer. Apply vacuum contact and check alignment again. If the vacuum application skewed the alignment, repeat the alignment process.</li>
 +
                <li>Expose the wafer for 30 seconds (3.7 mW/cm<sup>2</sup>) through the aligned feeding channel mask.</li>
 +
                <li> Bake the wafer for 10 min at 95&#8451;.</li>
 +
                <li>Develop the wafer for 2 minutes in Su8 Developer with mild agitation.</li>
 +
                <li>Rinse the wafer for 10 seconds in IPA. Check to ensure that the development is finished. If undesired photoresist remains, develop again for 20 seconds.</li>
 +
                <li>Verify channel height using a profilometer. The expected height is 10.5 &mu;m. If the channel dimensions lie outside of your expected tolerance bounds, the process must be repeated with modified spin coat-ing parameters.</li>
 +
            </ol>
 +
            <br>
 +
 
 +
            <h3 id="hm3.2">Chip Preparation</h3>
 +
            Dimethyl siloxane monomer (Sylgard 184) was mixed at a 10:1 ratio with curing agent, poured onto the silicon wafer, defoamed, degassed for 1 h, and cured at 75&#8451;for 1h. Individual chips were then cut, and the inlets and outlets were punched using a puncher (in-ner diameter: 0.9 mm, outer diameter: 1.3 mm), and cleaned with Scotch tape. Bonding to water-cleaned and nitrogen-dried coverslips was ensured using oxygen plasma treatment (60 s at LOW and O<sub>2</sub> pressure at 170 mTorr) on the day the experiments were started. Attach the treated surfaces of the chip and coverslip together gently to prevent cavity collapse. The chips were then incubated at 75&#8451; overnight to reinforce the bonding.<br>
 +
            <br>
 +
 
 +
            <h3 id="hm3.3">Cell Preparation</h3>
 +
            Escherichia coli strains were grown overnight in LB with appropriate antibiotics and diluted 1:100 ap-proximately 2-3 h before the beginning of the experiments in the imaging media, which consisted of M9 salts,10% (v/v) LB, 0.2% (w/v) glucose, 2mM MgSO<sub>4</sub>, 0.1mM CaCl<sub>2</sub>, 1.5 &mu;M thiamine hydrochloride (Sigma Aldrich, included as a passivating agent). The cells were centrifuged on a holder that could fit into a standard table-top centrifuge at 4000 &times; g for 10 min to insert them into the single straight channels. The feeding channels were con-nected to syringes filled with imaging media using Tygon tubing (VWR), and media was pumped us-ing syringe pumps (New Era Pump System) initially at a high rate of 100 &mu;l/min for 5 min, to clear the inlets and outlets.The media was then pumped at 2.5-5 &mu;l/min for the duration of the experiment and the cells were allowed to adapt to the device for several hours before imaging was started.<br>
 +
             <br>
 +
 
 +
            <h3 id="hm3.4">IPTG Synchronization</h3>
 +
            To synchronize the phase of the oscillators in the population, we diluted the strains in imaging medium supplemented with appropriate antibiotics and 1 mM IPTG to obtain a density of the early expo-nential phase (OD<sub>600</sub>=0.2) 8 h later (&sim;1&times;10<sup>-6</sup>) at 37&#8451;.<br>
 +
             <br>
 +
 
 +
            <h3 id="hm3.5">Microscopy and Image Acquisition</h3>
 +
            Images were acquired using a Nikon ECLIPSE Ti inverted microscope equipped with a temperature-controlled incubator, an Orca R2 CCD camera (Hamamatsu), a 60&times;Plan Apo oil objective (numerical aperture (NA) 1.4, Nikon), an automated xy-stage (Ludl) and Nikon HG Pre-centered Fiber Illuminator (INTENSILIGHT C-HGFIE). All experiments were performed at 37&#8451;. Typical exposure was low (50-100 ms) to reduce photobleaching, and the reporter channels were acquired using 2 &times; 2 binning (CCD chip dimension of 1,344 &times; 1,024 pixels, effective pixel size of 129 &times; 129 nm). Then, 16-bit TIFF images were taken every 5-8 min, and focal drift was controlled via the Nikon PerfectFocus system, as well as a custom routine based on z-stack images of a sacrificial position (a position that was not used for further analysis). The following filter sets were used for acquisition: GFP (Nikon GFPHQ), RFP (Nikon TxRed), YFP (Nikon YFPHQ) and CFP (Nikon CFPHQ).
 +
 
 +
            <br><br><br><br><br>
 +
            <a class="mdl-button mdl-js-button mdl-button--raised mdl-js-ripple-effect" href = "https://2017.igem.org/Team:Peking/Hardware" style="background-color: #366FB4; color: white;">
 +
                 Back < Hardware
 +
            </a>
 +
 
 +
            <a class="mdl-button mdl-button--accent mdl-js-button mdl-button--raised mdl-js-ripple-effect" href = "https://2017.igem.org/Team:Peking/Hardware/Autosnap" style="background-color: #2979FF; color: white;">
 +
                 Goto > Hardware/Autosnap
 +
             </a>
 
         </div>
 
         </div>
  
    </section>
 
  
 +
     
 +
    </div>
  
 
     <section class="docs-text-styling download mdl-color--grey-800" style="height: 1px"></section>
 
     <section class="docs-text-styling download mdl-color--grey-800" style="height: 1px"></section>
Line 347: Line 437:
 
                 <h1 class="mdl-mega-footer__heading">Acknowledgement</h1>
 
                 <h1 class="mdl-mega-footer__heading">Acknowledgement</h1>
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
                     <li><a href=" http:
+
                     <li><a href="http://dean.pku.edu.cn/pkudean/"> </li>
                //dean.pku.edu.cn/pkudean/"> </li>
+
                 <li><a href="http://dean.pku.edu.cn/pkudean/"><img src="https://static.igem.org/mediawiki/2017/9/99/Peking_footer_logo_admin.png" height = "50px"/></a></li>
                 <li><a href="http://dean.pku.edu.cn/pkudean/"><img
+
                 <li><a href="http://www.bio.pku.edu.cn/en/"> <img src="https://static.igem.org/mediawiki/2017/a/ab/Peking_footer_logo_slslogo.png" height = "50px"/> </a></li>
                        src="https://static.igem.org/mediawiki/2017/9/99/Peking_footer_logo_admin.png" height="50px"/></a>
+
                 <li><a href="http://cqb.pku.edu.cn/en/"> <img src="https://static.igem.org/mediawiki/2017/9/9a/Peking_footer_logo_cqb.png" height = "48px"/> </a></li>
                </li>
+
                 <li><a href="http://www.bio.pku.edu.cn/en/"> <img
+
                        src="https://static.igem.org/mediawiki/2017/a/ab/Peking_footer_logo_slslogo.png" height="50px"/> </a>
+
                </li>
+
                 <li><a href="http://cqb.pku.edu.cn/en/"> <img
+
                        src="https://static.igem.org/mediawiki/2017/9/9a/Peking_footer_logo_cqb.png" height="48px"/> </a></li>
+
  
 
                 </ul>
 
                 </ul>
Line 364: Line 448:
 
                 <input class="mdl-mega-footer__heading-checkbox" type="checkbox" checked>
 
                 <input class="mdl-mega-footer__heading-checkbox" type="checkbox" checked>
 
                 <h1 class="mdl-mega-footer__heading">Connection</h1>
 
                 <h1 class="mdl-mega-footer__heading">Connection</h1>
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
+
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
                     <li><a href=" https:
+
                     <li><a href="https://www.facebook.com/pekingigem"></a></li>
                //www.facebook.com/pekingigem"></a></li>
+
 
                 <li><a href="https://www.facebook.com/pekingigem">Facebook</a></li>
 
                 <li><a href="https://www.facebook.com/pekingigem">Facebook</a></li>
 
                 <li><a href="https://www.youtube.com/channel/UCefEYVCVqKJLmoJrSxivgZQ">Youtube</a></li>
 
                 <li><a href="https://www.youtube.com/channel/UCefEYVCVqKJLmoJrSxivgZQ">Youtube</a></li>
Line 378: Line 461:
 
                 <h1 class="mdl-mega-footer__heading">Contact</h1>
 
                 <h1 class="mdl-mega-footer__heading">Contact</h1>
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;>
                     <li><a href=" http:
+
                     <li><a href="http://www.synbiowiki.com"> </a></li>
                //www.synbiowiki.com"> </a></li>
+
 
                 <li><a href="http://www.synbiowiki.com">SynBioWiki.com</a></li>
 
                 <li><a href="http://www.synbiowiki.com">SynBioWiki.com</a></li>
 
                 <li><a href="mailto:PekingIGEM@gmail.com">Mail</a></li>
 
                 <li><a href="mailto:PekingIGEM@gmail.com">Mail</a></li>
Line 387: Line 469:
 
             <div class="mdl-mega-footer__drop-down-section">
 
             <div class="mdl-mega-footer__drop-down-section">
 
                 <input class="mdl-mega-footer__heading-checkbox" type="checkbox" checked>
 
                 <input class="mdl-mega-footer__heading-checkbox" type="checkbox" checked>
                 <h2 style="color: white; "><strong>Peking iGEM</strong> 2017</h2>
+
                 <h2 style="color: white; "> <strong>Peking iGEM</strong> 2017</h2>
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;">
 
                 <ul class="mdl-mega-footer__link-list" style="margin-left: 0px;">
                     <li style="color: white; line-height: 1.88em;">Peking University,<br> No.5 Yiheyuan Road Haidian
+
                     <li style="color: white; line-height: 1.88em;">Peking University,<br> No.5 Yiheyuan Road Haidian District, Beijing, P.R.China<br>100871</li>
                        District, Beijing, P.R.China<br>100871
+
                    </li>
+
 
                 </ul>
 
                 </ul>
 
             </div>
 
             </div>
Line 401: Line 481:
  
 
</main>
 
</main>
 +
  
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 00:52, 2 November 2017

Peking iGEM 2017

Microfluidics


Overview

Microfluidics devices are applied to deal with flow of liquid inside micrometer-sized channels, and conduct continuous observation under fluorescence microscopy. This year, we designed two microfluidic chips --a sand-clock chip and a seven-segment display chip. The sand-clock microfluidic device is a "mother machine", which consists of dozens of thin channels holding single cells, and can be used to track individual cell line for generations. And for the seven-segment display chip, cells were kept in chambers to observe fluorescence changes.


Description

Seven-segment Display Microfluidic Chip


The Design of Seven-segment Display
The Photo of Seven-segment Display


The seven-segment display microfluidic chip consists of four distinct regions. Each region has several chambers which can be filled with different bacteria strains. Narrow fences were set between chambers to reduce flow resistance. The medium can be introduced to the chamber through three inlets. The inlets were designed to have concentric fences to avoid impurity obstructing feeding channel. Different inlets connecting the same region were used to insert medium containing different inducer.


The Demonstration of Seven-segment Display

Altogether the chip can show 1,2 and 3 pattern as a seven-segment display, when we filling the four distinct regions with our strains in the control unit.

Sand Clock Microfluidic Chip


The Design of Sand-clock Chip
The Photo of Sand-clock Chip


The sand clock chip contains seven regions, and each region has its own feeding channel connecting with inlet and outlet. Thin channels housing single cell are located at the central parts of feeding channels. This sand clock microfluidic chip can be used to track individual cells of different strains at the same time.


The Demonstration of Sand-clock Chip

If cells in different feeding channels are designed to give out fluorescence in order, the chip can show a sand-clock pattern.


Protocol

Fabrication of the Microfluidic Master Plate

Fabrication of the E. coli mother machine was carried out using standard UV photolithography in a clean-room environment. The device was designed using L Edit and quartz-chrome photomasks.
Note: for all spin coater steps described below, the following shorthand notation is used: speed (rpm)/acceleration (rpm/sec)/time (sec).

First Layer: Cell Channels

This set of steps lays down the channels that house the cells in the final device. The tolerances for this layer are very stringent; the exposure dose and contact between mask and wafer must be opti-mized. We recommend trying out a range of exposure parameters to ensure that a useful device is obtained. We also stress the importance of the very long post-exposure baking time in the process below.
  1. Place a new 3'' Si wafer (we used 380 μm TEST-grade wafers from University Wafer) in a dish of fresh acetone. Sonicate at high power for 5 minutes.
  2. Sequentially rinse the wafer with streams of methyl alcohol (MeOH), isopropyl alcohol (IPA) and H2O (10 seconds per solvent).
  3. Place the wafer on a 2'' spin chuck and spin a few seconds at 500 rpm.
  4. While spinning, sequentially rinse the wafer with streams of MeOH, IPA and H2O.
  5. Spin the wafer for 1 minute at 3 000 rpm to dry.
  6. Dehydrate the wafer with the smooth side upwards above clean filter paper for 5 minutes on a hot plate set to 190℃, then cool it at r.t.
  7. Place the dehydrated wafer onto the spin-coater chuck and dispense a small (cover ∼2/3 of the wafer surface) amount of Su8 3005 photoresist (Microchem) using a disposable pipette. Run the spin pro-gram (Set spin program to: Step 1: 500/100/10, Step 2: 1400/300/36). This should result in a coat of ∼1.5 μm.
  8. Soft-bake the wafer for 2 minutes at 95℃.
  9. Expose the wafer for 40∼50 seconds (3.7 mW/cm2) through the cell-channel mask in vacuum contact mode.
  10. Post exposure, bake the wafer (in order) for 2 minutes at 95℃ (according to the thickness of this layer), then cool it at r.t.

Second Layer: Feeding Channels

This layer of the device forms the culture-medium flow channels. The dimensions of these features are not critical: we have used feeding channels of widely varying dimension to similar effect. The alignment is sensitive to large errors, however. The alignment between the feeding channels and cell channels must be accurate (down to a couple of microns) in order to ensure that the cell channels are of the desired final length.
  1. Set the spin program to: Step 1: 500/100/10, Step 2:1200/300/40.
  2. Place the wafer onto the spin-coater chuck and dispense a small amount of Su8 3005 photoresist (cover ∼2/3 of the wafer surface) with a pipette being careful not to introduce bubbles. Run the spin program. This should result in a coat of - 9 μm.
  3. Soft-bake the wafer (in order) for 8 min at 95℃.
  4. With an Su8-developer-soaked swab, clean the newly-deposited photoresist off the alignment marks to make them visible for the alignment process.
  5. Align the feeding channel mask to the alignment marks on the wafer. Apply vacuum contact and check alignment again. If the vacuum application skewed the alignment, repeat the alignment process.
  6. Expose the wafer for 30 seconds (3.7 mW/cm2) through the aligned feeding channel mask.
  7. Bake the wafer for 10 min at 95℃.
  8. Develop the wafer for 2 minutes in Su8 Developer with mild agitation.
  9. Rinse the wafer for 10 seconds in IPA. Check to ensure that the development is finished. If undesired photoresist remains, develop again for 20 seconds.
  10. Verify channel height using a profilometer. The expected height is 10.5 μm. If the channel dimensions lie outside of your expected tolerance bounds, the process must be repeated with modified spin coat-ing parameters.

Chip Preparation

Dimethyl siloxane monomer (Sylgard 184) was mixed at a 10:1 ratio with curing agent, poured onto the silicon wafer, defoamed, degassed for 1 h, and cured at 75℃for 1h. Individual chips were then cut, and the inlets and outlets were punched using a puncher (in-ner diameter: 0.9 mm, outer diameter: 1.3 mm), and cleaned with Scotch tape. Bonding to water-cleaned and nitrogen-dried coverslips was ensured using oxygen plasma treatment (60 s at LOW and O2 pressure at 170 mTorr) on the day the experiments were started. Attach the treated surfaces of the chip and coverslip together gently to prevent cavity collapse. The chips were then incubated at 75℃ overnight to reinforce the bonding.

Cell Preparation

Escherichia coli strains were grown overnight in LB with appropriate antibiotics and diluted 1:100 ap-proximately 2-3 h before the beginning of the experiments in the imaging media, which consisted of M9 salts,10% (v/v) LB, 0.2% (w/v) glucose, 2mM MgSO4, 0.1mM CaCl2, 1.5 μM thiamine hydrochloride (Sigma Aldrich, included as a passivating agent). The cells were centrifuged on a holder that could fit into a standard table-top centrifuge at 4000 × g for 10 min to insert them into the single straight channels. The feeding channels were con-nected to syringes filled with imaging media using Tygon tubing (VWR), and media was pumped us-ing syringe pumps (New Era Pump System) initially at a high rate of 100 μl/min for 5 min, to clear the inlets and outlets.The media was then pumped at 2.5-5 μl/min for the duration of the experiment and the cells were allowed to adapt to the device for several hours before imaging was started.

IPTG Synchronization

To synchronize the phase of the oscillators in the population, we diluted the strains in imaging medium supplemented with appropriate antibiotics and 1 mM IPTG to obtain a density of the early expo-nential phase (OD600=0.2) 8 h later (∼1×10-6) at 37℃.

Microscopy and Image Acquisition

Images were acquired using a Nikon ECLIPSE Ti inverted microscope equipped with a temperature-controlled incubator, an Orca R2 CCD camera (Hamamatsu), a 60×Plan Apo oil objective (numerical aperture (NA) 1.4, Nikon), an automated xy-stage (Ludl) and Nikon HG Pre-centered Fiber Illuminator (INTENSILIGHT C-HGFIE). All experiments were performed at 37℃. Typical exposure was low (50-100 ms) to reduce photobleaching, and the reporter channels were acquired using 2 × 2 binning (CCD chip dimension of 1,344 × 1,024 pixels, effective pixel size of 129 × 129 nm). Then, 16-bit TIFF images were taken every 5-8 min, and focal drift was controlled via the Nikon PerfectFocus system, as well as a custom routine based on z-stack images of a sacrificial position (a position that was not used for further analysis). The following filter sets were used for acquisition: GFP (Nikon GFPHQ), RFP (Nikon TxRed), YFP (Nikon YFPHQ) and CFP (Nikon CFPHQ).




Back < Hardware Goto > Hardware/Autosnap