|
|
Line 264: |
Line 264: |
| <br>The pSB3C5 plasmid <a href=” http://parts.igem.org/Part:BBa_K2201032”>BBa_K2201032</a> containing five sgRNAs and <i>mRFP-sacB</i> was linearized with the primers <a href=”https://2017.igem.org/Team:Bielefeld-CeBiTec/Notebook/Oligonucleotides”>17tx and 17we</a> and assembled with <a href=””>UBP_target</a> via Gibson Assembly. 10 μL of the Gibson Assembly was transformed into chemically competent <i>E. coli</i> BL21(DE3) cells containing the pSB1K3-plasmid <a href=”http://parts.igem.org/wiki/index.php?title=Part:BBa_K2201027”>BBa_K2201027</a>. After the heat shock, the cells were recovered in 850 μL liquid recovery media (2xYT media supplemented with 50 mM K<sub>2</sub>HPO<sub>4</sub>, 0.5 mM IPTG, 100 μM isoC<sup>m</sup>TP, and 100 μM isoGTP) and shaked at 200 rpm and 37 °C in a 12-well plate in the VWR – Incubation Microplate Shaker for 1 h. Then, the recovery media was filled up with liquid growth media (2xYT media added with 50 mM K<sub>2</sub>HPO<sub>4</sub>, 0.5 mM IPTG, 100 μM isoC<sup>m</sup>TP, 100 μM isoGTP, 3 μg μL<sup>-1</sup> chloramphenicol, and 50 μg μL<sup>-1</sup> kanamycin for final concentrations) up to 1 mL and shaked at 600 rpm and 37 °C in a 12-well plate in the VWR – Incubation Microplate Shaker for 24 h. Plasmid isolations were performed for single 1 mL cultures. The high-copy plasmid pSB1K3 <a href=”http://parts.igem.org/wiki/index.php?title=Part:BBa_K2201027”>BBa_K2201027</a> was digested by the restriction enzymes <i>Pvu</i>I, <i>Nsi</i>I und <i>Bam</i>HI. The remaining low-copy plasmid pSB3C5 containing the UBP was then prepared for the Oxford Nanopore Sequencing.</p> | | <br>The pSB3C5 plasmid <a href=” http://parts.igem.org/Part:BBa_K2201032”>BBa_K2201032</a> containing five sgRNAs and <i>mRFP-sacB</i> was linearized with the primers <a href=”https://2017.igem.org/Team:Bielefeld-CeBiTec/Notebook/Oligonucleotides”>17tx and 17we</a> and assembled with <a href=””>UBP_target</a> via Gibson Assembly. 10 μL of the Gibson Assembly was transformed into chemically competent <i>E. coli</i> BL21(DE3) cells containing the pSB1K3-plasmid <a href=”http://parts.igem.org/wiki/index.php?title=Part:BBa_K2201027”>BBa_K2201027</a>. After the heat shock, the cells were recovered in 850 μL liquid recovery media (2xYT media supplemented with 50 mM K<sub>2</sub>HPO<sub>4</sub>, 0.5 mM IPTG, 100 μM isoC<sup>m</sup>TP, and 100 μM isoGTP) and shaked at 200 rpm and 37 °C in a 12-well plate in the VWR – Incubation Microplate Shaker for 1 h. Then, the recovery media was filled up with liquid growth media (2xYT media added with 50 mM K<sub>2</sub>HPO<sub>4</sub>, 0.5 mM IPTG, 100 μM isoC<sup>m</sup>TP, 100 μM isoGTP, 3 μg μL<sup>-1</sup> chloramphenicol, and 50 μg μL<sup>-1</sup> kanamycin for final concentrations) up to 1 mL and shaked at 600 rpm and 37 °C in a 12-well plate in the VWR – Incubation Microplate Shaker for 24 h. Plasmid isolations were performed for single 1 mL cultures. The high-copy plasmid pSB1K3 <a href=”http://parts.igem.org/wiki/index.php?title=Part:BBa_K2201027”>BBa_K2201027</a> was digested by the restriction enzymes <i>Pvu</i>I, <i>Nsi</i>I und <i>Bam</i>HI. The remaining low-copy plasmid pSB3C5 containing the UBP was then prepared for the Oxford Nanopore Sequencing.</p> |
| </div> | | </div> |
| + | |
| + | With the help of Oxford Nanopore Sequencing we were able to detect the UBP after the <i>in vivo</i> cultivation. Therefore we assume that the retention system is functional. Further replicates would need to be done for a statistical aproved analysis. This experimental seems to be a very promising set-up for the UBP retention <i>in vivo</i>. |
| + | |
| + | <div class="figure seventy"> |
| + | <img class="figure image" src="https://static.igem.org/mediawiki/2017/a/ad/T--Bielefeld-CeBiTec--02112017--nanopore_sequencing_f%C3%BCr_results_ubp_retention2222.png"> |
| + | <p class="figure subtitle"><b>Figure (11): Oxford Nanopore Sequencing of <a href=” http://parts.igem.org/Part:BBa_K2201032”>BBa_K2201032</a> containing the UBP after <i>in vivo</i> cultivation and retention.</b> |
| + | <br>The flow cell lays can be seen in the front. On the laptop screen: Green areas on the grid show the quantity of nanopores sequencing a DNA molecule at a moment. |
| + | </div> |
| | | |
| </article> | | </article> |