Difference between revisions of "Team:NTHU Taiwan/Results"

 
(96 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{:Team:NTHU_Taiwan/MenuBar}}
 
<html>
 
<html>
  
Line 10: Line 11:
 
#bodyContent {background-color:#f6f6e3;}
 
#bodyContent {background-color:#f6f6e3;}
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
/**************************************************************** MENU ***************************************************************/
 
/* Wrapper for the menu */
 
 
.igem_2017_menu_wrapper {
 
border-bottom: 3px solid #c2dac0;
 
background-color:#f6f6e3;
 
font-family:'Open Sans', sans-serif;
 
overflow: hidden;
 
}
 
 
.igem_2017_menu_wrapper a { 
 
float: left;
 
font-size: 1.2em;
 
color: #6c5070;
 
text-align: center;
 
padding: 25px 20px;
 
text-decoration: none;
 
}
 
 
.munu_img img{
 
position: fixed;
 
height: 9%;
 
}
 
 
/* this hides the scrollbar to keep view consistency */
 
.igem_2017_menu_wrappe::-webkit-scrollbar {
 
display: none;
 
}
 
 
.submenu_wrapper {
 
float: left;
 
  overflow: hidden;
 
}
 
 
.submenu_wrapper .menu_button {
 
letter-spacing: 1px;
 
text-transform: uppercase;
 
font-size: 1.2em;
 
border: none;
 
outline: none;
 
color: #6c5070;
 
padding: 25px 20px;
 
background-color: inherit;
 
}
 
 
.igem_2017_menu_wrapper a:hover, .submenu_wrapper:hover .menu_button {
 
color: #DF6A6A;
 
}
 
 
.submenu_button {
 
display: none;
 
position: absolute;
 
background-color: rgba(246, 246, 227, 0.7);
 
min-width: 160px;
 
z-index: 1;
 
}
 
 
.submenu_button a {
 
float: none;
 
color: #6c5070;
 
padding: 8px 16px;
 
text-decoration: none;
 
display: block;
 
text-align: left;
 
}
 
 
.submenu_button a:hover {
 
font-size: 1.3em;
 
 
}
 
 
.submenu_wrapper:hover .submenu_button {
 
display: block;
 
}
 
 
/*menu_wrapper left space*/
 
.igem_2017_menu_wrapper .menu_right_margin {
 
margin-left: 160px;
 
}
 
 
/*menu_wrapper right space*/
 
.igem_2017_menu_wrapper .menu_bottom_padding {
 
width: 100%;
 
height: 30px;
 
float:left;
 
}
 
 
/* styling for the menu button when it is the current page */
 
.current_page {
 
color:#df6a6a !important;
 
}
 
 
/* when the page size is bigger than 800px, this show/hide control is hidden by default */
 
.igem_2017_menu_wrapper #display_menu_control {
 
display:none;
 
text-align:center;
 
}
 
 
 
  
Line 117: Line 20:
 
display:block;
 
display:block;
 
float:left;
 
float:left;
font-family:'Open Sans', sans-serif;
+
font-family:'Helvetica', sans-serif;
 
background-color: #F6F6E3;
 
background-color: #F6F6E3;
 
}
 
}
Line 136: Line 39:
  
 
.igem_2017_content_wrapper h1, .igem_2017_content_wrapper h2 .igem_2017_content_wrapper h3, .igem_2017_content_wrapper h4, .igem_2017_content_wrapper h5, .igem_2017_content_wrapper h6 {
 
.igem_2017_content_wrapper h1, .igem_2017_content_wrapper h2 .igem_2017_content_wrapper h3, .igem_2017_content_wrapper h4, .igem_2017_content_wrapper h5, .igem_2017_content_wrapper h6 {
padding: 40px 0px 15px 0px;  
+
font-family: Helvetica;
 +
padding: 50px 0px 15px 0px;  
 
border-bottom: 0px;  
 
border-bottom: 0px;  
 
color: #2C2C2C;
 
color: #2C2C2C;
Line 143: Line 47:
 
}
 
}
  
#pdf {
+
 
 +
 
 +
.igem_2017_content_wrapper .content {
 
width: 950px;
 
width: 950px;
height: 1200px;
 
 
margin: 2em auto;
 
margin: 2em auto;
padding-top: 20px;
 
 
}
 
}
  
#pdf object {
+
.igem_2017_content_wrapper .content p{
display: block;
+
font-family: Helvetica;
border: solid 2px #2c2c2c;
+
color: #2C2C2C;
 +
font-size: 1.4em;
 +
line-height: 1.3em;
 +
padding: 0px 0px;
 +
text-align: justify;
 +
text-justify:inter-ideograph;
 
}
 
}
  
/***************************************************** RESPONSIVE STYLING ****************************************************/
 
  
/* IF THE SCREEN IS LESS THAN 1200PX */
 
@media only screen and (max-width: 1200px) {
 
  
#content {width:100%; }
+
.igem_2017_content_wrapper .content img{
.igem_2017_menu_wrapper {width:100%; right:0;}
+
margin: auto;
.highlight {padding:10px 0px;}
+
display: block;
.igem_2017_menu_wrapper #display_menu_control { display:none; }
+
float: center;
#menu_content { display:block;}
+
padding: 20px 0px 30px 0px;
.menu_button.direct_to_page {padding-left: 17px;}
+
+
 
}
 
}
  
/* IF THE SCREEN IS LESS THAN 800PX */
+
.column .full_size {
@media only screen and (max-width: 800px) {
+
width: 100%;
 +
padding-top: 50px;
 +
}
  
.igem_2017_menu_wrapper { width:100%; height: 15%; position:relative; left:0%;}
+
/* class for a half width column */
.igem_2017_content_wrapper {width:100%; margin-left:0px;}
+
.column .half_size {
.column.half_size  {width:100%; }
+
width: 50%;
.column.full_size img, .column.half_size img {  width: 100%; padding: 10px 0px;}
+
float: left;
.highlight {padding:15px 5px;}
+
}
.igem_2017_menu_wrapper #display_menu_control { display:block; }
+
 
#menu_content { display:none;}
+
#pdf {
.igem_2017_menu_wrapper .menu_button .expand_collapse_icon { width: 5%; }
+
width: 950px;
.menu_bottom_padding {display:none;}
+
height: 1200px;
.menu_button.direct_to_page { padding-left: 36px; }
+
margin: 2em auto;
 +
padding-top: 20px;
 +
}
 +
 
 +
#pdf object {
 +
display: block;
 +
border: solid 2px #2c2c2c;
 
}
 
}
 
 
</style>
 
</style>
  
Line 194: Line 105:
 
</head>
 
</head>
  
<!-- <div class="munu_img">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan">
 
<img src="https://static.igem.org/mediawiki/2017/1/1f/T--NTHU_Taiwan--HOME--logo.png">
 
</a>
 
</div> -->
 
  
<div class="igem_2017_menu_wrapper" >
 
<!-- this div is hidden by default and will only be displayed if the screen size is too small -->
 
<div class="menu_button" id="display_menu_control">
 
MENU 
 
</div>
 
  
  
<div id="menu_content">
+
<!-- start of content -->
<a href="https://2017.igem.org/Team:NTHU_Taiwan">
+
<div class="igem_2017_content_wrapper">
<div class="menu_button menu_right_margin">
+
<img width="25%" src="https://static.igem.org/mediawiki/2017/3/3d/T--NTHU_Taiwan--Project--gear.png">
HOME
+
<div style="text-align: center">
</div>  
+
<h1 style="color:#DF6A6A">Results
</a>
+
 
 
<div class="submenu_wrapper">
+
</h1>
<button class="menu_button">TEAM</button>
+
<hr width="20%" />
<div class="submenu_button">
+
</div>
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Team">
+
<div class="content">
<div id="Team_page">
+
Team
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Attributions">
+
<div id="Attributions_page">
+
Attributions
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Collaborations">
+
<div  id="Collaborations_page">
+
Collaborations
+
</div>
+
</a>
+
</div>
+
</div>
+
  
<div class="submenu_wrapper">
+
<table style="line-height:27px";"border:3px #cccccc solid;" cellpadding="10" border='1';"font-size:25px">
<button class="menu_button">PROJECT</button>
+
 <tr>
<div class="submenu_button">
+
 <td style="background-color: #f6f6e3"><center><h1>Overview</h1></center><br>
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Description">
+
<font size=5>
<div id="Description_page">
+
1. Constructed and confirmed all of our composite parts.<br><br>
Description
+
2. Proved our recombinant HRP can degrade BPA and NP by the result of mass spectrum.<br><br>
</div>
+
3. Used IR spectrum to prove the function of our detection method and we took the microscope images on the gold surface to prove the ability to estimate the concentration of EDCs in the water.<br><br>
</a>
+
4. Found the limitation of our detection method is 5 µM (about 1ppm) of EDCs.<br><br>
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Design">
+
5. Showed comparison of our detection method and traditional ways:<br><br>
<div  id="Design_page">
+
</font></font>
Design
+
<img width="85%"  src="https://static.igem.org/mediawiki/2017/9/91/265.png">
</div>
+
</a>
+
</td>
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Contribution">
+
 </tr>
<div  id="Contribution_page">
+
</table><br><br><br>
Contribution
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Model">
+
<div  id="Model_page">
+
Model
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Results">
+
<div  id="Results_page">
+
Results
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Demonstrate">
+
<div  id="Demonstrate_page">
+
Demonstrate
+
</div>
+
</a>
+
+
</div>
+
</div>
+
  
<div class="submenu_wrapper">
+
     
<button class="menu_button">WET LAB</button>
+
<div class="submenu_button">
+
   
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Experiments">
+
<div  id="Experiments_page">
+
Experiments
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Protocol">
+
<div  id="Protocol_page">
+
Protocol
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Notebook">
+
<div  id="Notebook_page">
+
Notebook
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/InterLab">
+
<div  id="InterLab_page">
+
InterLab
+
</div>
+
</a>
+
</div>
+
</div>
+
  
<div class="submenu_wrapper">
 
<button class="menu_button">PARTS</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Basic_Part">
 
<div  id="Basic_Part_page">
 
Basic Parts
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Composite_Part">
 
<div  id="Composite_Part_page">
 
Composite Parts
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Part_Collection">
 
<div  id="Part_Collection_page">
 
Part Collection
 
</div>
 
</a>
 
</div>
 
</div>
 
  
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Safety">
+
<center><h1>
<div class="menu_button">
+
PART I Degradation
SAFETY
+
</center></h1><br><br><br>
</div>  
+
</a>
+
  
<div class="submenu_wrapper">
 
<button class="menu_button">HUMAN PRACTICES</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/HP/Silver">
 
<div id="Silver_page">
 
Silver HP
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/HP/Gold_Integrated">
 
<div  id="Gold_Integrated_page">
 
Integrated and Gold
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Engagement">
 
<div  id="Engagement_page">
 
Public Engagement
 
</div>
 
</a>
 
</div>
 
</div>
 
  
<div class="submenu_wrapper">
+
<h2>
<button class="menu_button">AWARDS</button>
+
Cloning of Horseradish Peroxidase
<div class="submenu_button">
+
</h2>
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Applied_Design">
+
<div id="Applied_Design_page">
+
Applied Design
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Entrepreneurship">
+
<div  id="Entrepreneurship_page">
+
Integrated Human Practices
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Hardware">
+
<div  id="Hardware_page">
+
Hardware
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Model">
+
<div  id="Model_page">
+
Model
+
</div>
+
</a>
+
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Software">
+
<div  id="Software_page">
+
Software
+
</div>
+
</a>
+
<a href="#">
+
<div>
+
Criteria
+
</div>
+
</a>
+
</div>
+
</div>
+
  
<a href="https://igem.org/2017_Judging_Form?team=NTHU_Taiwan">
 
<div class="menu_button">
 
JUDGING FORM
 
</div>
 
</a>
 
  
</div>
 
  
</div>
 
  
 +
<p>
 +
To make sure the plasmid is cloned into <I>E. coli</I> BL-21 strain, we extracted the plasmid from transformed <I>E. coli</I>.(Figure 1) We validated the gene by PCR with specific primers and then we examined the result with Agarose gel electrophoresis. A successful cloning was verified from the results of a PCR performed with designed specific primers according to the theoretically expected length of horseradish peroxidase(927bp)(Figure 2).
 +
</p>
  
  
 +
<p>
 +
<img src="https://static.igem.org/mediawiki/2017/b/bb/T--NTHU_Taiwan--Results--hrp_ecoli.png">
 +
</p>
  
 +
<p><center><font size=2>
 +
Figure 1. 
 +
</center></center></p>
  
<!-- start of content -->
+
<p>
<div class="igem_2017_content_wrapper">
+
<img src="https://static.igem.org/mediawiki/2017/7/70/T--NTHU_Taiwan--Results--hrp_pcr3.png">
<img width="25%" src="https://static.igem.org/mediawiki/2017/e/e2/T--NTHU_Taiwan--Notebook--Top.png">
+
</p>
<div style="text-align: center">
+
<h1 style="color:#DF6A6A">Results
+
+
</h1>
+
<hr width="20%" />
+
</div>
+
  
<style>
+
<p><center><font size=2>
p{
+
Figure 2. Primers for VR backbone:1,3,5 ;primers for HRP:2,4,6
width:1000px;
+
</font></center></p><br><br><br>
font-size:20px;
+
text-align: justify;
+
text-justify:inter-ideograph;
+
line-height: 30px;
+
}
+
</style>
+
<body>
+
<center>
+
  
<font color="blue">
+
<h2>Expression and purification of apo-HRP and refolded-HRP</h2>
<font align="center">
+
<font size="7">
+
<p>
+
PART I Degradation
+
</p>
+
</font>
+
</font>
+
</font>
+
  
<font size="7">
+
<p>
<p>
+
To obtain functional horseradish peroxidase we need to purify the protein from <I>E. coli</I>, but this kind of protein does not have any function and it is called apoprotein. After the first time purification, we refolded the protein to construct the correct structure and then we activated the apo-HRP with hemin to produce the functional HRP. We examined the existence of this protein by SDS-PAGE after purification. (Figure 3)
Cloning of Horseradish Peroxidase
+
</p>
</p>
+
</font>
+
  
<font size=4>
 
<p>
 
To make sure the plasmid is cloned into E.coli BL-21 strain, we extracted the plasmid from transformed E.coli.(figure 1) We validated the gene by PCR with specific primers and then we examined the result with Agarose gel electrophoresis. A successful cloning was verified from the results of a PCR performed with designed specific primers according to the theoretically expected length of horseradish peroxidase(927bp).
 
</p>
 
</font>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/b/bb/T--NTHU_Taiwan--Results--hrp_ecoli.png">
+
<img width="65%" src="https://static.igem.org/mediawiki/2017/3/3a/T--NTHU_Taiwan--Results--hrp_page.png">
</p>
+
</p>
  
<p>
+
<p><center><font size=2>
<center>
+
Figure 3. SDS-PAGE for purification of HRP
<font size=2>
+
</font></center></p><br><br><br>
Figure 1.
+
</font>
+
</center>
+
</p>
+
  
<p align="center">
 
<p>
 
<img src="https://static.igem.org/mediawiki/2017/c/c4/T--NTHU_Taiwan--Results--hrp_pcr.png">
 
</p>
 
  
<font align="center">
+
<h2>Functional test of Horseradish Peroxidase</h2>
<p>
+
Figure 2. Primers for VR backbone:1,3,5 ;primers for monobody:2,4,6
+
</p>
+
</font>
+
  
<font size="7">
 
<p>
 
Expression and purification of apo-HRP and refolded-HRP
 
</p>
 
</font>
 
  
<font size=4>
+
<p>
<p>
+
We use the mass spectrum to prove HRP can degrade BPA and NP by the signals of the large molecular weight of by-products.(Figure 4-7) We found that there are lots of additional peaks show up after degraded by HRP, and this result can prove our HRP can degrade BPA and NP.
To obtain functional horseradish peroxidase we need to purify the protein from E.coli, but this kind of protein does not have any function and it is called apoprotein. After the first time purification, we refolded the protein to construct the correct structure and then we activated the apo-HRP with hemin to produce the functional HRP. We examined the existence of this protein by SDS-PAGE after purification. (figure 3)
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="65%" src="https://static.igem.org/mediawiki/2017/3/3a/T--NTHU_Taiwan--Results--hrp_page.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img width="40%" src="https://static.igem.org/mediawiki/2017/f/fb/T--NTHU_Taiwan--Results--ms_bpa.png">
Figure 3. SDS-PAGE for purification of HRP
+
</p>
</p>
+
</font>
+
  
<font size="7">
+
<p><center><font size=2>
<p>
+
Figure 4. the mass spectrum of BPA
Functional test of Horseradish Peroxidase
+
</font></center></p>
</p>
+
</font>
+
  
<font size="4">
+
<p>
<p>
+
<img width="40%" src="https://static.igem.org/mediawiki/2017/2/2f/T--NTHU_Taiwan--Results--ms_bpa_hrp.png">
To prove the degradation ability of HRP, we mixed 25 µg of HRP with 1 mM H2O2 and BPA or NP in the 1 mL water. The environment of degradation is suitable for HRP to degrade the phenolic compounds(40℃ and pH=6-7). After degradation for 24 hours, we denatured HRP by briefly heating up to 80℃ and use LC-PDA (Liquid Chromatography - Photodiode Array detector) to analysis the result of degradation.(figure 4 and 5)
+
</p>
</p>
+
</font>
+
  
<p>
+
<p><center><font size=2>
<img width="50%" src="https://static.igem.org/mediawiki/2017/0/03/T--NTHU_Taiwan--Results--lc_bpa.png">
+
Figure 5. the mass spectrum of BPA after degradation
</p>
+
</font></center></p>
  
<font align="center">
+
<p>
<p>
+
<img width="40%" src="https://static.igem.org/mediawiki/2017/2/28/T--NTHU_Taiwan--Results--ms_np.png">
Figure 4. The result of LC-PDA (BPA sample)
+
</p>
</p>
+
</font>
+
  
<p>
+
<p><center><font size=2>
<img width="50%" src="https://static.igem.org/mediawiki/2017/9/90/T--NTHU_Taiwan--Results--lc_np.png">
+
Figure 6. the mass spectrum of NP
</p>
+
</font></center></p>
  
<font align="center">
+
<p>
<p>
+
<img width="40%" src="https://static.igem.org/mediawiki/2017/b/b3/T--NTHU_Taiwan--Results--ms_np_hrp.png">
Figure 5. The result of LC-PDA (NP sample)
+
</p>
</p>
+
</font>
+
  
<font size="4">
+
<p><center><font size=2>
<p>
+
Figure 7. the mass spectrum of NP after degradation
From the result of LC-PDA, we found that there are two extra peaks showing after degradation and these extra peaks represent the by-products from degradation.
+
</font></center></p><br><br><br>
Unfortunately, we can’t know how much EDCs is degraded by HRP because:
+
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
(1) The peak of the by-products overlap the peak of EDCs and we can’t get the information of remained EDCs. (There is a by-product have a broad peak from 2.2 min to 3.5min and its intensity also much higher than the peak of EDCs)
 
</p>
 
</font>
 
  
<font size="4">
+
<center><h1>
<p>
+
PART II  Detection
(2) The quality of the column from LC isn’t good enough to separate the by-products from EDCs due to their similar molecular properties. (This LC can’t distinguish between BPA and NP so we estimated that it can’t distinguish the degraded by-product from BPA or NP as well.)
+
</center></h1><br><br><br>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
Moreover, we use the mass spectrum to prove HRP can degrade BPA and NP by the signals of the large molecular weight of by-products.(figure 6-9) We found that there are lots of additional peaks show up after degraded by HRP, and this result can prove our HRP can degrade BPA and NP.
 
</p>
 
</font>
 
  
<p>
 
<img width="40%" src="https://static.igem.org/mediawiki/2017/f/fb/T--NTHU_Taiwan--Results--ms_bpa.png">
 
</p>
 
  
<font align="center">
+
<h2>
<p>
+
Cloning of ER-alpha and monobody
Figure 6 the mass spectrum of BPA
+
</h2>
</p>
+
</font>
+
  
<p>
 
<img width="40%" src="https://static.igem.org/mediawiki/2017/2/2f/T--NTHU_Taiwan--Results--ms_bpa_hrp.png">
 
</p>
 
  
<font align="center">
 
<p>
 
Figure 7 the mass spectrum of BPA after degradation
 
</p>
 
</font>
 
  
<p>
+
<p>
<img width="40%" src="https://static.igem.org/mediawiki/2017/2/28/T--NTHU_Taiwan--Results--ms_np.png">
+
We cloned the sequence of ER-alpha and Monobody into the vector, and then we transformed the plasmid into BL-21 competent cells, respectively.(Figure 8 and 9)
</p>
+
After transformation, we extracted both plasmids from the cells and the vector was validated by gel electrophoresis.  
 +
</p>
  
<font align="center">
 
<p>
 
Figure 8 the mass spectrum of NP
 
</p>
 
</font>
 
  
<p>
+
<p>
<img width="40%" src="https://static.igem.org/mediawiki/2017/b/b3/T--NTHU_Taiwan--Results--ms_np_hrp.png">
+
<img width="27%" src="https://static.igem.org/mediawiki/2017/c/ce/T--NTHU_Taiwan--Results--mono_ecoli.png">
</p>
+
</p>
  
<font align="center">
+
<p><center><font size=2>
<p>
+
Figure 8. <I>E. coli</I> with gene of monobody
Figure 9 the mass spectrum of NP after degradation
+
</font></center></p>
</p>
+
</font>
+
  
<font color="blue">
 
<font align="center">
 
<font size="7">
 
<p>
 
PART II  Detection
 
</p>
 
</font>
 
</font>
 
</font>
 
  
<font size="7">
+
<p>
<p>
+
<img width="27%" src="https://static.igem.org/mediawiki/2017/9/98/T--NTHU_Taiwan--Results--er_ecoli.png">
Cloning of ER-alpha and monobody
+
</p>
</p>
+
</font>
+
  
<font size="4">
+
<p><center><font size=2>
<p>
+
Figure 9. <I>E. coli</I> with gene of ER-alpha
We cloned the sequence of ER-alpha and Monobody into the vector, and then we transformed the plasmid into BL-21 competent cells, respectively.(Figure 10 and 11)
+
</font></center></p>
After transformation, we extracted both plasmids from the cells and the vector was validated by gel electrophoresis.
+
</p>
+
</font>
+
  
<p>
 
<img width="20%" src="https://static.igem.org/mediawiki/2017/c/ce/T--NTHU_Taiwan--Results--mono_ecoli.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
A successful cloning was verified from the results of a PCR performed with specifically designed primers according to the theoretically expected length of ER-alpha_INP fusion gene (2199bp) and Monobody (797bp).(Figure 10)
Figure 10. E.coli with gene of monobody 
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="20%" src="https://static.igem.org/mediawiki/2017/9/98/T--NTHU_Taiwan--Results--er_ecoli.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img width="50%" src="https://static.igem.org/mediawiki/2017/2/28/T--NTHU_Taiwan--Results--PCR2.png">
Figure 11. E.coli with gene of ER-alpha
+
</p>
</p>
+
</font>
+
  
<font size="4">
+
<p><center><font size=2>
<p>
+
Figure 10.  1 : RFP ( mRFP F-primer and mRFP R-primer ); 2 : IPTG (promoter) + INP + RFP2 (ER F-primer and ER R-primer ); 3 : IPTG (promoter) + INP + RFP 1 (ER F-primer and ER R-primer ) ; 4 : IPTG (promoter) + ER with red spot  (ER F-primer and ER R-primer ); 5 : IPTG (promoter) + ER2  (ER F-primer and ER R-primer ); 6 : IPTG (promoter) + ER1  (ER F-primer and ER R-primer ); 7 : IPTG (promoter) + Monobody with red spot (Monobody F-primer and Monobody R-primer ); 8 : IPTG (promoter) + Monobody 2 (Monobody F-primer and Monobody R-primer ) ; 9 : IPTG (promoter) + Monobody 1 (Monobody F-primer and Monobody R-primer ); 10 : RFP ( VR primer and VF2 primer ); 11 : IPTG (promoter) + INP + RFP 2 ( VR primer and VF2 primer ); 12 : IPTG (promoter) + INP + RFP 1 ( VR primer and VF2 primer ); 13 : IPTG (promoter) + ER with red spot  ( VR primer and VF2 primer ); 14 : IPTG (promoter) + ER2  ( VR primer and VF2 primer ); 15 : IPTG (promoter) + ER1  ( VR primer and VF2 primer ); 16 : IPTG (promoter) + Monobody with red spot ( VR primer and VF2 primer ); 17 : IPTG (promoter) + Monobody 2 ( VR primer and VF2 primer ); 18 : IPTG (promoter) + Monobody 1 ( VR primer and VF2 primer )
A successful cloning was verified from the results of a PCR performed with specifically designed primers according to the theoretically expected length of ER-alpha (2199bp) and Monobody (797bp).(Figure 12)
+
</font></center></p><br><br><br>
</p>
+
</font>
+
  
<p>
 
<img width="40%" src="https://static.igem.org/mediawiki/2017/b/b0/T--NTHU_Taiwan--Results--er_mono_pcr.png">
 
</p>
 
  
<font align="center">
+
<h2>Function of ice nucleation protein (INP)</h2>
<p>
+
Figure 12  1 : RFP ( mRFP F-primer and mRFP R-primer ); 2 : IPTG (promoter) + INP + RFP2 (ER F-primer and ER R-primer ); 3 : IPTG (promoter) + INP + RFP 1 (ER F-primer and ER R-primer ) ; 4 : IPTG (promoter) + ER with red spot  (ER F-primer and ER R-primer ); 5 : IPTG (promoter) + ER2  (ER F-primer and ER R-primer ); 6 : IPTG (promoter) + ER1  (ER F-primer and ER R-primer ); 7 : IPTG (promoter) + Monobody with red spot (Monobody F-primer and Monobody R-primer ); 8 : IPTG (promoter) + Monobody 2 (Monobody F-primer and Monobody R-primer ) ; 9 : IPTG (promoter) + Monobody 1 (Monobody F-primer and Monobody R-primer ); 10 : RFP ( VR primer and VF2 primer ); 11 : IPTG (promoter) + INP + RFP 2 ( VR primer and VF2 primer ); 12 : IPTG (promoter) + INP + RFP 1 ( VR primer and VF2 primer ); 13 : IPTG (promoter) + ER with red spot  ( VR primer and VF2 primer ); 14 : IPTG (promoter) + ER2  ( VR primer and VF2 primer ); 15 : IPTG (promoter) + ER1  ( VR primer and VF2 primer ); 16 : IPTG (promoter) + Monobody with red spot ( VR primer and VF2 primer ); 17 : IPTG (promoter) + Monobody 2 ( VR primer and VF2 primer ); 18 : IPTG (promoter) + Monobody 1 ( VR primer and VF2 primer )
+
</p>
+
</font>
+
  
<font size="7">
 
<p>
 
Function of ice nucleation protein (INP)
 
</p>
 
</font>
 
  
<font size="4">
 
<p>
 
We compared the difference between E.coli expressed RFP and RFP-INP(figure 13). After the lysis of culture expressing RFP-INP, most of RFP was on the fragments of the membrane. Due to the larger structure of plasma membrane, it is easily spin down. If RFP-INP is on the E.coli plasma membrane when we centrifuged the cell lysate, RFP-INP is spun down with the plasma membrane, and we see a red pellet.
 
</p>
 
</font>
 
  
<font size="4">
+
<p>
<p>
+
We compared the difference between <I>E. coli</I> expressed RFP and RFP-INP(Figure 11). After the lysis of culture expressing RFP-INP, most of RFP was on the fragments of the membrane. Due to the larger structure of plasma membrane, it is easily spin down. If RFP-INP is on the <I>E. coli</I> plasma membrane when we centrifuged the cell lysate, RFP-INP is spun down with the plasma membrane, and we see a red pellet.
On contract, after cell lysis of RFP expression E.coli, most of RFP suspended in the solution. Since the centrifugation force, we set in this experiment is not enough to spin down particles as small as RFP. We see RFP suspended in the supernatant even after centrifugation.
+
</p>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
This experiment showed that INP can bring RFP to the membrane of E.coli, and this result proved the function of INP.
 
</p>
 
</font>
 
  
<p>
 
<img src="https://static.igem.org/mediawiki/2017/d/d7/T--NTHU_Taiwan--Results--inp.png">
 
</p>
 
  
<font align="center">
 
<p>
 
Figure 13. 1 : Fragments of E.coli with gene of RFP-INP ; 2:  Fragments of E.coli with gene of RFP
 
</p>
 
</font>
 
  
<font size="7">
+
<p>
<p>
+
On contract, after cell lysis of RFP expression <I>E. coli</I>, most of RFP suspended in the solution. Since the centrifugation force, we set in this experiment is not enough to spin down particles as small as RFP. We see RFP suspended in the supernatant even after centrifugation.
Characterization of detection system
+
</p>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
To prove that our detection system can distinguish the sample has EDCs or not, we used IR spectrum to measure specific bonds on E.coli and verify the detection function.(Table 1)
 
</p>
 
</font>
 
  
<p>
 
<img width="50%" src="https://static.igem.org/mediawiki/2017/7/71/T--NTHU_Taiwan--Results--table_1.png">
 
</p>
 
  
<font align="center">
 
<p>
 
Table 1. The IR signals for E.coli
 
</p>
 
</font>
 
  
<font size="4">
+
<p>
<p>
+
This experiment showed that INP can bring RFP to the membrane of <I>E. coli</I>, and this result proved the function of INP.  
In the beginning, we try to use live cells for the detection system. However, we found that all the samples have the information of E.coli. Showing that there is no difference between the sample with 5mM EDCs and the sample with no EDCs. (Figure 14)
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="75%"src="https://static.igem.org/mediawiki/2017/1/1f/T--NTHU_Taiwan--Results--ir.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img width="30%" src="https://static.igem.org/mediawiki/2017/d/d7/T--NTHU_Taiwan--Results--inp.png">
Figure 14 The IR spectrum of samples in different conditions (live E.coli)
+
</p>
</p>
+
</font>
+
  
<font size="4">
+
<p><center><font size=2>
<p>
+
Figure 11. 1 : Fragments of <I>E. coli</I> with gene of RFP-INP ; 2:  Fragments of <I>E. coli</I> with gene of RFP
To decrease the activity of E.coli, we tried to freeze E.coli in -80℃ for 24 hours and use it after thawing on ice immediately. We found that there is a significant difference between the sample with 5mM EDCs and EDCs-free and the intensity of IR signals also decrease due to the reduction of mobility of E.coli.(Figure 15) This result can prove that our detection system can detect EDCs in the water.
+
</font></center></p><br><br><br>
</p>
+
</font>
+
  
<p>
 
<img width="75%" src="https://static.igem.org/mediawiki/2017/6/6c/T--NTHU_Taiwan--Results--ir2.png">
 
</p>
 
  
<font align="center">
 
<p>
 
Figure 15. The IR spectrum of samples in different conditions (freezed E.coli)
 
</p>
 
</font>
 
  
<font size="7">
+
<h2>
<p>
+
Characterization of biosensing chip
Proof of concept: quantifying a number of EDCs in the water
+
</h2>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
To prove our detection system can measure the concentration of EDCs, we use crystal violet to stain E.coli on the surface of gold and then observe the density of stained E.coli under microscope. Due to the surface tension force of water, there are lots of E.coli remained around the drop edge of sample, and we only observed the area in the middle of the sample to reduce the error. (Figure 16)
 
</p>
 
</font>
 
  
<p>
 
<img src="https://static.igem.org/mediawiki/2017/2/29/T--NTHU_Taiwan--Results--demon.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
To prove that our biosensing chip can distinguish the sample has EDCs or not, we used IR spectrum to measure specific bonds on <I>E. coli</I> and verify the detection function.(Table 1)
Figure 16 Tthe sample under 50X microscope
+
</p>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
We observed the density of E.coli when the samples contained different concentration of BPA and NP from 5mM to 5nM (Figure 17 and 18). This result indicates that when the concentration of EDCs decreases, the density of E.coli will decrease as well.
 
</p>
 
</font>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/3/32/T--NTHU_Taiwan--Results--bpa_500.png">
+
<img width="50%" src="https://static.igem.org/mediawiki/2017/7/71/T--NTHU_Taiwan--Results--table_1.png">
</p>
+
</p>
  
<font align="center">
+
<p><center><font size=2>
<p>
+
Table 1. The IR signals for <I>E. coli</I>
Figure 17 The samples with different concentration of BPA under 500X microscope
+
</font></center></p>
</p>
+
</font>
+
  
<p>
 
<img width="75%" src="https://static.igem.org/mediawiki/2017/8/81/T--NTHU_Taiwan--Results--np_500.png">
 
</p>
 
  
<font align="center">
 
<p>
 
Figure 18 The samples with different concentration of NP under 500X microscope
 
</p>
 
</font>
 
  
<font size="4">
+
<p>
<p>
+
In the beginning, we try to use live cells for the biosensing chip. However, we found that all the samples have the information of <I>E. coli</I>. Showing that there is no difference between the sample with 5mM EDCs and the sample with no EDCs. (Figure 12)
For the practical propose, we added trehalose (0.1M) to prevent ER-alpha from denaturing and increase the time of conservation. We also observed the density of E.coli with samples containing the different concentration of BPA and NP from 5mM to 5nM.(Figure 19 and 20) From the result of observation, we can find the similar tendency as the sample without trehalose.
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="75%" src="https://static.igem.org/mediawiki/2017/7/70/T--NTHU_Taiwan--Results--tbpa_500.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img width="75%"src="https://static.igem.org/mediawiki/2017/1/1f/T--NTHU_Taiwan--Results--ir.png">
Figure 19 The samples with different concentration of BPA in 0.1M trehalose under 500X microscope
+
</p>
</p>
+
</font>
+
  
<p>
+
<p><center><font size=2>
<img width="75%" src="https://static.igem.org/mediawiki/2017/c/c9/T--NTHU_Taiwan--Results--tnp_500.png">
+
Figure 12. The IR spectrum of samples in different conditions (live <I>E. coli</I>)
</p>
+
</font></center></p>
  
<font align="center">
 
<p>
 
Figure 20  the samples with different concentration of NP in 0.1M trehalose under 500X microscope
 
</p>
 
</font>
 
  
<font size="4">
 
<p>
 
To clarify the relationship between the concentration of EDCs and the density of E.coli, we use image J to count the amount of E.coli on the surface. (Figure 21-24) From the results of imageJ, we can get the similar tendency as the result from the pictures of the microscope. However, the density of E.coli decreases in the presence of 0.1 M trehalose, and this result suggested that although trehalose can improve the time to store lyophilized E.coli, it can decrease the precision of our detection system.
 
</p>
 
</font>
 
  
<p>
 
<img width="42%" src="https://static.igem.org/mediawiki/2017/7/71/21.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
To decrease the activity of <I>E. coli</I>, we tried to freeze <I>E. coli</I> in -80℃ for 24 hours and use it after thawing on ice immediately. We found that there is a significant difference between the sample with 5mM EDCs and EDCs-free and the intensity of IR signals also decrease due to the reduction of mobility of <I>E. coli</I>.(Figure 13) This result can prove that our biosensing chip can detect EDCs in the water.
Figure 21 Samples of BPA
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="42%" src="https://static.igem.org/mediawiki/2017/2/2f/T--NTHU_Taiwan--Results--np-22.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img width="75%" src="https://static.igem.org/mediawiki/2017/6/6c/T--NTHU_Taiwan--Results--ir2.png">
Figure 22 Samples of NP
+
</p>
</p>
+
</font>
+
  
<p>
+
<p><center><font size=2>
<img width="42%" src="https://static.igem.org/mediawiki/2017/5/5e/T--NTHU_Taiwan--Results--tbpa-23.png">
+
Figure 13. The IR spectrum of samples in different conditions (freezed <I>E. coli</I>)
</p>
+
</font></center></p><br><br><br>
  
<font align="center">
 
<p>
 
Figure 23 Samples of BPA in 0.1M trehalose
 
</p>
 
</font>
 
  
<p>
 
<img width="42%" src="https://static.igem.org/mediawiki/2017/5/55/T--NTHU_Taiwan--Results--tnp-24.png">
 
</p>
 
  
<font align="center">
+
<h2>Proof of concept: quantifying a number of EDCs in the water</h2>
<p>
+
Figure 24 Samples of NP in 0.1M trehalose
+
</p>
+
</font>
+
  
<font size="7">
 
<p>
 
The limitation of our detection system
 
</p>
 
</font>
 
  
<font size="4">
 
<p>
 
To further understand the limitation of the concentration that our system can achieve, we observed the density of E.coli in four different conditions of background. We find that when there are no EDCs in the sample, the density of E.coli is close to the concentration of EDCs below 5µM. Showing that our detection system can’t measure the concentration of EDCs less than 5µM.(Figure 25 and Table 2)
 
</p>
 
</font>
 
  
<p>
 
<img width="35%" src="https://static.igem.org/mediawiki/2017/b/be/T--NTHU_Taiwan--Results--4%2A25.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
To prove our biosensing chip can measure the concentration of EDCs, we use crystal violet to stain <I>E. coli</I> on the surface of gold and then observe the density of stained <I>E. coli</I> under microscope. Due to the surface tension force of water, there are lots of <I>E. coli</I> remained around the drop edge of sample, and we only observed the area in the middle of the sample to reduce the error. (Figure 14)
Figure 25 The background of 4 different conditions
+
</p>
</p>
+
</font>
+
  
<p>
 
<img width="40%" src="https://static.igem.org/mediawiki/2017/6/6f/T--NTHU_Taiwan--Results---t-26.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
<img src="https://static.igem.org/mediawiki/2017/2/29/T--NTHU_Taiwan--Results--demon.png">
Table 2. The amounts of E.coli in the 4 different backgrounds
+
</p>
</p>
+
</font>
+
  
<font color="blue">
+
<p><center><font size=2>
<font align="center">
+
Figure 14. The sample under 50X microscope
<font size="7">
+
</font></center></p>
<p>
+
Part III  Future Work
+
</p>
+
</font>
+
</font>
+
</font>
+
  
<font size="4">
 
<p>
 
1. Since we failed to express GFP and ER-alpha at the same time, we will try to construct the gene containing GFP and ER-alpha and express them together for the purpose of detection. (Figure 26)
 
</p>
 
</font>
 
  
<p>
 
<img src="https://static.igem.org/mediawiki/2017/b/be/T--NTHU_Taiwan--Results--f-1.png">
 
</p>
 
  
<font align="center">
+
<p>
<p>
+
        We observed the density of E. coli when the samples contained a different concentration of BPA and NP from 5mM to 5nM (Figure 15 and 16). This result indicates that when the concentration of EDCs decreases, the density of E. coli will decrease as well.
Figure 26. Expression of GFP in the E.coli for detection.
+
</p>
</p>
+
</font>
+
  
<font size="4">
 
<p>
 
2. Since we don’t have time to construct the detection system to measure the change of fluorescence or surface plasmon resonance, we will construct the detection system to estimate the concentration of EDCs in the water precisely. (Figure 27)
 
</p>
 
</font>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/f/f7/T--NTHU_Taiwan--Results--f-2.png">
+
<img width="75%" src="https://static.igem.org/mediawiki/2017/3/32/T--NTHU_Taiwan--Results--bpa_500.png">
</p>
+
</p>
  
<font align="center">
+
<p><center><font size=2>
<p>
+
Figure 15. The samples with different concentration of BPA under 500X microscope
Figure 27. Using the change of  fluorescence to estimate the precise concentration of EDCs in the water
+
</font></center></p>
</p>
+
</font>
+
  
</center>
+
<p>
</body>
+
<img width="75%" src="https://static.igem.org/mediawiki/2017/8/81/T--NTHU_Taiwan--Results--np_500.png">
 +
</p>
  
+
<p><center><font size=2>
</div>
+
Figure 16. The samples with different concentration of NP under 500X microscope
 +
</font></center></p>
  
<script type="Text/JavaScript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.6/jquery.min.js"></script>
 
  
<script>
 
  
// This is the jquery part of your template.
+
<p>
// Try not modify any of this code too much since it makes your menu work.
+
For the practical propose, we added trehalose (0.1M) to prevent ER-alpha from denaturing and increase the time of conservation. We also observed the density of <I>E. coli</I> with samples containing the different concentration of BPA and NP from 5mM to 5nM.(Figure 17 and 18) From the result of observation, we can find the similar tendency as the sample without trehalose.
 +
</p>
  
$(document).ready(function() {
 
  
$("#HQ_page").attr('id','');
+
<p>
 +
<img width="75%" src="https://static.igem.org/mediawiki/2017/7/70/T--NTHU_Taiwan--Results--tbpa_500.png">
 +
</p>
  
// call the functions that control the menu
+
<p><center><font size=2>
menu_functionality();
+
Figure 17. The samples with different concentration of BPA in 0.1M trehalose under 500X microscope
hide_show_menu();
+
</font></center></p>
  
  
 +
<p>
 +
<img width="75%" src="https://static.igem.org/mediawiki/2017/c/c9/T--NTHU_Taiwan--Results--tnp_500.png">
 +
</p>
  
//this function controls the expand and collapse buttons of the menu and changes the +/- symbols
+
<p><center><font size=2>
function menu_functionality() {
+
Figure 18.  the samples with different concentration of NP in 0.1M trehalose under 500X microscope
 +
</font></center></p>
  
//when clicking on a "menu_button", it will change the "+/-" accordingly and it will show/hide the corresponding submenu
 
$(".menu_button").click(function(){
 
  
// add or remove the class "open" , this class holds the "-"
 
$(this).children().toggleClass("open");
 
// show or hide the submenu
 
$(this).next('.submenu_wrapper').fadeToggle(400);
 
});
 
  
// when the screen size is smaller than 800px, the display_menu_control button appears and will show/hide the whole menu
+
<p>
$("#display_menu_control").click(function(){
+
To clarify the relationship between the concentration of EDCs and the density of <I>E. coli</I>, we use image J to count the amount of <I>E. coli</I> on the surface. (Figure 19-22) From the results of imageJ, we can get the similar tendency as the result from the pictures of the microscope. However, the density of <I>E. coli</I> decreases in the presence of 0.1 M trehalose, and this result suggested that although trehalose can improve the time to store lyophilized <I>E. coli</I>, it can decrease the precision of our biosensing chip.
$('#menu_content').fadeToggle(400);
+
</p>
});
+
  
// call the current page highlight function
 
highlight_current_page();
 
}
 
  
 +
<p>
 +
<img width="55%" src="https://static.igem.org/mediawiki/2017/7/71/21.png">
 +
</p>
  
// call the highlight current page function to show it on the menu with a different background color
+
<p><center><font size=2>
function highlight_current_page() {
+
Figure 19. Samples of BPA
 +
</font></center></p>
  
// select a page from the menu based on the id assigned to it and the current page name and add the class "current page" to make it change background color
+
<p>
$("#"+  wgPageName.substring(wgPageName.lastIndexOf("/")+1, wgPageName.length ) + "_page").addClass("current_page");
+
<img width="55%" src="https://static.igem.org/mediawiki/2017/2/2f/T--NTHU_Taiwan--Results--np-22.png">
 +
</p>
  
// now that the current_page class has been added to a menu item, make the submenu fade in
+
<p><center><font size=2>
$(".current_page").parents(".submenu_wrapper").fadeIn(400);
+
Figure 20. Samples of NP
// change the +/- symbol of the corresponding menu button
+
</font></center></p>
$(".current_page").parents(".submenu_wrapper").prev().children().toggleClass("open");
+
+
}
+
  
 +
<p>
 +
<img width="55%" src="https://static.igem.org/mediawiki/2017/5/5e/T--NTHU_Taiwan--Results--tbpa-23.png">
 +
</p>
  
 +
<p><center><font size=2>
 +
Figure 21. Samples of BPA in 0.1M trehalose
 +
</font></center></p>
  
// allow button on the black menu bar to show/hide the side menu
+
<p>
function hide_show_menu() {
+
<img width="55%" src="https://static.igem.org/mediawiki/2017/5/55/T--NTHU_Taiwan--Results--tnp-24.png">
+
</p>
// in case you preview mode is selected, the menu is hidden for better visibility
+
 
if (window.location.href.indexOf("submit") >= 0) {
+
<p><center><font size=2>
$(".igem_2017_menu_wrapper").hide();
+
Figure 22. Samples of NP in 0.1M trehalose
}
+
</font></center></p><br><br><br>
 +
 
 +
 
 +
<h2>Functional test of ER-alpha</h2>
 +
 
 +
 
 +
<p>
 +
To ensure the function of ER-alpha on the surface of <I>E. coli</I>, we compared the difference between the BL-21 <I>E. coli</I> and ER-alpha expressed <I>E. coli</I> in the different concentration of BPA and NP. (Figure 23 and 24)From the results, we found that BL-21 can’t affect the outcomes of the biosensing chip beyond 5µM of EDCs.
 +
</p>
 +
 
 +
<p>
 +
<img width="55%" src="https://static.igem.org/mediawiki/2017/f/f8/T--NTHU_Taiwan--Result--BPA.png">
 +
</p>
 +
 
 +
<p><center><font size=2>
 +
Figure 23. Samples of BPA
 +
</font></center></p>
 +
 
 +
<p>
 +
<img width="55%" src="https://static.igem.org/mediawiki/2017/c/c8/T--NTHU_Taiwan--Result--NP.png">
 +
</p>
 +
 
 +
<p><center><font size=2>
 +
Figure 24. Sample of NP
 +
</font></center></p><br><br><br>
 +
 
 +
 
 +
 
 +
<h2>The limitation of our biosensing chip</h2>
 +
 
 +
 
 +
 
 +
<p>
 +
To further understand the limitation of the concentration that our biosensing chip can achieve, we observed the density of <I>E. coli</I> in four different conditions of background. We find that when there are no EDCs in the sample, the density of <I>E. coli</I> is close to the concentration of EDCs below 5µM. Showing that our biosensing chip can’t measure the concentration of EDCs less than 5µM.(Figure 25 and Table 2)
 +
</p>
 +
 
 +
 
 +
<p>
 +
<img width="35%" src="https://static.igem.org/mediawiki/2017/b/be/T--NTHU_Taiwan--Results--4%2A25.png">
 +
</p>
 +
 
 +
<p><center><font size=2>
 +
Figure 25. The background of 4 different conditions
 +
</font></center></p>
 +
 
 +
<p>
 +
<img width="80%" src="https://static.igem.org/mediawiki/2017/6/6f/T--NTHU_Taiwan--Results---t-26.png">
 +
</p>
 +
 
 +
<p><center><font size=2>
 +
Table 2. The amounts of <I>E. coli</I> in the 4 different backgrounds
 +
</font></center></p><br><br><br>
  
// if the black menu bar has been loaded
 
  if (document.getElementById('bars_item')) {
 
  
// when the "bars_item" has been clicked
+
<center><h1>
$("#bars_item").click(function() {
+
Part III  Future Work
$("#sideMenu").hide();
+
</center></h1>
  
// show/hide the menu wrapper
 
$(".igem_2017_menu_wrapper").fadeToggle("100");
 
});
 
  }
 
  
// because the black menu bars loads at a different time than the rest of the page, this function is set on a time out so it can run again in case it has not been loaded yet
 
else {
 
    setTimeout(hide_show_menu, 15);
 
}
 
}
 
  
 +
<p>
 +
1. Since we failed to express GFP and ER-alpha at the same time, we will try to construct the gene containing GFP and ER-alpha and express them together for the purpose of detection. (Figure 26)
 +
</p>
  
});
 
  
 +
<p>
 +
<img src="https://static.igem.org/mediawiki/2017/b/be/T--NTHU_Taiwan--Results--f-1.png">
 +
</p>
  
</script>
+
<p><center><font size=2>
 +
Figure 26. Expression of GFP in the <I>E. coli</I> for detection.
 +
</font></center></p>
 +
 
 +
 
 +
 
 +
<p>
 +
2. Since we don’t have time to construct the biosensing chip to measure the change of fluorescence, we will construct the biosensing chip to estimate the concentration of EDCs in the water precisely. (Figure 27)
 +
</p>
 +
 
 +
 
 +
<p>
 +
<img width="65%" src="https://static.igem.org/mediawiki/2017/f/f7/T--NTHU_Taiwan--Results--f-2.png">
 +
</p>
 +
 
 +
<p><center><font size=2>
 +
Figure 27. Using the change of fluorescence to estimate the precise concentration of EDCs in the water
 +
</font></center></p>
 +
<br>
 +
<br>
 +
<br>
 +
<h2>Reference</h2>
 +
<br>
 +
<br>
 +
<p>
 +
1. Dong, S., Mao, L., Luo, S., Zhou, L., Feng, Y., & Gao, S. (2014). Comparison of lignin
 +
peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from the water. Environmental Science and Pollution Research, 21(3), 2358-2366.
 +
</p>
 +
 
 +
<p>
 +
2. Tamerler, C., Oren, E. E., Duman, M., Venkatasubramanian, E., & Sarikaya, M. (2006).
 +
Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance
 +
spectroscopy and a quartz crystal microbalance. Langmuir, 22(18), 7712-7718.
 +
</p>
 +
 
 +
<p>
 +
3. Vineh, M. B., Saboury, A. A., Poostchi, A. A., Rashidi, A. M., & Parivar, K. (2017). Stability
 +
and activity improvement of horseradish peroxidase by covalent immobilization on
 +
functionalized reduced graphene oxide and biodegradation of high phenol
 +
concentration. International Journal of Biological Macromolecules.
 +
</p>
 +
 
 +
<p>
 +
4. Gundinger, T., & Spadiut, O. (2017). A comparative approach to recombinantly produce the
 +
plant enzyme horseradish peroxidase in Escherichia coli. Journal of Biotechnology, 248,
 +
15-24.
 +
</p>
 +
 
 +
<p>
 +
5. Filip, Z. D. E. N. E. K., Hermann, S., & Demnerova, K. A. T. E. Ř. I. N. A. (2008). FT-IR
 +
spectroscopic characteristics of differently cultivated Escherichia coli. Czech Journal of Food
 +
Sciences-UZPI (Czech Republic).
 +
</p>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 
 +
 +
 
 +
 
 +
 
 +
</div>
 +
</div>
  
 
</html>
 
</html>

Latest revision as of 01:27, 2 November 2017

Results


     

Overview


1. Constructed and confirmed all of our composite parts.

2. Proved our recombinant HRP can degrade BPA and NP by the result of mass spectrum.

3. Used IR spectrum to prove the function of our detection method and we took the microscope images on the gold surface to prove the ability to estimate the concentration of EDCs in the water.

4. Found the limitation of our detection method is 5 µM (about 1ppm) of EDCs.

5. Showed comparison of our detection method and traditional ways:




PART I Degradation




Cloning of Horseradish Peroxidase

To make sure the plasmid is cloned into E. coli BL-21 strain, we extracted the plasmid from transformed E. coli.(Figure 1) We validated the gene by PCR with specific primers and then we examined the result with Agarose gel electrophoresis. A successful cloning was verified from the results of a PCR performed with designed specific primers according to the theoretically expected length of horseradish peroxidase(927bp)(Figure 2).

Figure 1.

Figure 2. Primers for VR backbone:1,3,5 ;primers for HRP:2,4,6




Expression and purification of apo-HRP and refolded-HRP

To obtain functional horseradish peroxidase we need to purify the protein from E. coli, but this kind of protein does not have any function and it is called apoprotein. After the first time purification, we refolded the protein to construct the correct structure and then we activated the apo-HRP with hemin to produce the functional HRP. We examined the existence of this protein by SDS-PAGE after purification. (Figure 3)

Figure 3. SDS-PAGE for purification of HRP




Functional test of Horseradish Peroxidase

We use the mass spectrum to prove HRP can degrade BPA and NP by the signals of the large molecular weight of by-products.(Figure 4-7) We found that there are lots of additional peaks show up after degraded by HRP, and this result can prove our HRP can degrade BPA and NP.

Figure 4. the mass spectrum of BPA

Figure 5. the mass spectrum of BPA after degradation

Figure 6. the mass spectrum of NP

Figure 7. the mass spectrum of NP after degradation




PART II Detection




Cloning of ER-alpha and monobody

We cloned the sequence of ER-alpha and Monobody into the vector, and then we transformed the plasmid into BL-21 competent cells, respectively.(Figure 8 and 9) After transformation, we extracted both plasmids from the cells and the vector was validated by gel electrophoresis.

Figure 8. E. coli with gene of monobody

Figure 9. E. coli with gene of ER-alpha

A successful cloning was verified from the results of a PCR performed with specifically designed primers according to the theoretically expected length of ER-alpha_INP fusion gene (2199bp) and Monobody (797bp).(Figure 10)

Figure 10. 1 : RFP ( mRFP F-primer and mRFP R-primer ); 2 : IPTG (promoter) + INP + RFP2 (ER F-primer and ER R-primer ); 3 : IPTG (promoter) + INP + RFP 1 (ER F-primer and ER R-primer ) ; 4 : IPTG (promoter) + ER with red spot (ER F-primer and ER R-primer ); 5 : IPTG (promoter) + ER2 (ER F-primer and ER R-primer ); 6 : IPTG (promoter) + ER1 (ER F-primer and ER R-primer ); 7 : IPTG (promoter) + Monobody with red spot (Monobody F-primer and Monobody R-primer ); 8 : IPTG (promoter) + Monobody 2 (Monobody F-primer and Monobody R-primer ) ; 9 : IPTG (promoter) + Monobody 1 (Monobody F-primer and Monobody R-primer ); 10 : RFP ( VR primer and VF2 primer ); 11 : IPTG (promoter) + INP + RFP 2 ( VR primer and VF2 primer ); 12 : IPTG (promoter) + INP + RFP 1 ( VR primer and VF2 primer ); 13 : IPTG (promoter) + ER with red spot ( VR primer and VF2 primer ); 14 : IPTG (promoter) + ER2 ( VR primer and VF2 primer ); 15 : IPTG (promoter) + ER1 ( VR primer and VF2 primer ); 16 : IPTG (promoter) + Monobody with red spot ( VR primer and VF2 primer ); 17 : IPTG (promoter) + Monobody 2 ( VR primer and VF2 primer ); 18 : IPTG (promoter) + Monobody 1 ( VR primer and VF2 primer )




Function of ice nucleation protein (INP)

We compared the difference between E. coli expressed RFP and RFP-INP(Figure 11). After the lysis of culture expressing RFP-INP, most of RFP was on the fragments of the membrane. Due to the larger structure of plasma membrane, it is easily spin down. If RFP-INP is on the E. coli plasma membrane when we centrifuged the cell lysate, RFP-INP is spun down with the plasma membrane, and we see a red pellet.

On contract, after cell lysis of RFP expression E. coli, most of RFP suspended in the solution. Since the centrifugation force, we set in this experiment is not enough to spin down particles as small as RFP. We see RFP suspended in the supernatant even after centrifugation.

This experiment showed that INP can bring RFP to the membrane of E. coli, and this result proved the function of INP.

Figure 11. 1 : Fragments of E. coli with gene of RFP-INP ; 2: Fragments of E. coli with gene of RFP




Characterization of biosensing chip

To prove that our biosensing chip can distinguish the sample has EDCs or not, we used IR spectrum to measure specific bonds on E. coli and verify the detection function.(Table 1)

Table 1. The IR signals for E. coli

In the beginning, we try to use live cells for the biosensing chip. However, we found that all the samples have the information of E. coli. Showing that there is no difference between the sample with 5mM EDCs and the sample with no EDCs. (Figure 12)

Figure 12. The IR spectrum of samples in different conditions (live E. coli)

To decrease the activity of E. coli, we tried to freeze E. coli in -80℃ for 24 hours and use it after thawing on ice immediately. We found that there is a significant difference between the sample with 5mM EDCs and EDCs-free and the intensity of IR signals also decrease due to the reduction of mobility of E. coli.(Figure 13) This result can prove that our biosensing chip can detect EDCs in the water.

Figure 13. The IR spectrum of samples in different conditions (freezed E. coli)




Proof of concept: quantifying a number of EDCs in the water

To prove our biosensing chip can measure the concentration of EDCs, we use crystal violet to stain E. coli on the surface of gold and then observe the density of stained E. coli under microscope. Due to the surface tension force of water, there are lots of E. coli remained around the drop edge of sample, and we only observed the area in the middle of the sample to reduce the error. (Figure 14)

Figure 14. The sample under 50X microscope

We observed the density of E. coli when the samples contained a different concentration of BPA and NP from 5mM to 5nM (Figure 15 and 16). This result indicates that when the concentration of EDCs decreases, the density of E. coli will decrease as well.

Figure 15. The samples with different concentration of BPA under 500X microscope

Figure 16. The samples with different concentration of NP under 500X microscope

For the practical propose, we added trehalose (0.1M) to prevent ER-alpha from denaturing and increase the time of conservation. We also observed the density of E. coli with samples containing the different concentration of BPA and NP from 5mM to 5nM.(Figure 17 and 18) From the result of observation, we can find the similar tendency as the sample without trehalose.

Figure 17. The samples with different concentration of BPA in 0.1M trehalose under 500X microscope

Figure 18. the samples with different concentration of NP in 0.1M trehalose under 500X microscope

To clarify the relationship between the concentration of EDCs and the density of E. coli, we use image J to count the amount of E. coli on the surface. (Figure 19-22) From the results of imageJ, we can get the similar tendency as the result from the pictures of the microscope. However, the density of E. coli decreases in the presence of 0.1 M trehalose, and this result suggested that although trehalose can improve the time to store lyophilized E. coli, it can decrease the precision of our biosensing chip.

Figure 19. Samples of BPA

Figure 20. Samples of NP

Figure 21. Samples of BPA in 0.1M trehalose

Figure 22. Samples of NP in 0.1M trehalose




Functional test of ER-alpha

To ensure the function of ER-alpha on the surface of E. coli, we compared the difference between the BL-21 E. coli and ER-alpha expressed E. coli in the different concentration of BPA and NP. (Figure 23 and 24)From the results, we found that BL-21 can’t affect the outcomes of the biosensing chip beyond 5µM of EDCs.

Figure 23. Samples of BPA

Figure 24. Sample of NP




The limitation of our biosensing chip

To further understand the limitation of the concentration that our biosensing chip can achieve, we observed the density of E. coli in four different conditions of background. We find that when there are no EDCs in the sample, the density of E. coli is close to the concentration of EDCs below 5µM. Showing that our biosensing chip can’t measure the concentration of EDCs less than 5µM.(Figure 25 and Table 2)

Figure 25. The background of 4 different conditions

Table 2. The amounts of E. coli in the 4 different backgrounds




Part III Future Work

1. Since we failed to express GFP and ER-alpha at the same time, we will try to construct the gene containing GFP and ER-alpha and express them together for the purpose of detection. (Figure 26)

Figure 26. Expression of GFP in the E. coli for detection.

2. Since we don’t have time to construct the biosensing chip to measure the change of fluorescence, we will construct the biosensing chip to estimate the concentration of EDCs in the water precisely. (Figure 27)

Figure 27. Using the change of fluorescence to estimate the precise concentration of EDCs in the water




Reference



1. Dong, S., Mao, L., Luo, S., Zhou, L., Feng, Y., & Gao, S. (2014). Comparison of lignin peroxidase and horseradish peroxidase for catalyzing the removal of nonylphenol from the water. Environmental Science and Pollution Research, 21(3), 2358-2366.

2. Tamerler, C., Oren, E. E., Duman, M., Venkatasubramanian, E., & Sarikaya, M. (2006). Adsorption kinetics of an engineered gold binding peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir, 22(18), 7712-7718.

3. Vineh, M. B., Saboury, A. A., Poostchi, A. A., Rashidi, A. M., & Parivar, K. (2017). Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration. International Journal of Biological Macromolecules.

4. Gundinger, T., & Spadiut, O. (2017). A comparative approach to recombinantly produce the plant enzyme horseradish peroxidase in Escherichia coli. Journal of Biotechnology, 248, 15-24.

5. Filip, Z. D. E. N. E. K., Hermann, S., & Demnerova, K. A. T. E. Ř. I. N. A. (2008). FT-IR spectroscopic characteristics of differently cultivated Escherichia coli. Czech Journal of Food Sciences-UZPI (Czech Republic).