Difference between revisions of "Team:Arizona State/Description"

Line 45: Line 45:
 
<p>During the design conception of this project, we noticed that last year’s 2016 ASU iGEM team’s nonfunctioning receivers were not constructed properly on the DNA level.  Since Last year’s team only had one receiver, it  was difficult to find orthogonal pairs of sender-receivers. For this reason,we decided to design and synthesize new receivers for orthogonality testing. First, we researched into designing new promoters for AHL quorum sensing systems. In doing so, we found that the some of the receivers in the system researched last year did not have a proper inducible promoter. For example, some receiver systems did not even include an inducible promoter within their system; or they used a wrong binding site within the inducible promoter. For this reason, designing new inducible promoters for receivers was a top priority this year for our team. </p>
 
<p>During the design conception of this project, we noticed that last year’s 2016 ASU iGEM team’s nonfunctioning receivers were not constructed properly on the DNA level.  Since Last year’s team only had one receiver, it  was difficult to find orthogonal pairs of sender-receivers. For this reason,we decided to design and synthesize new receivers for orthogonality testing. First, we researched into designing new promoters for AHL quorum sensing systems. In doing so, we found that the some of the receivers in the system researched last year did not have a proper inducible promoter. For example, some receiver systems did not even include an inducible promoter within their system; or they used a wrong binding site within the inducible promoter. For this reason, designing new inducible promoters for receivers was a top priority this year for our team. </p>
 
<p>Our team came across a paper by Spencer R Scott and Jeff Hasty from UC San Diego. They designed new inducible promoters that lead to better expression and easier cloning in their specific AHL related QS systems [2]. Due to this, our iGEM team utilized their thought and design process into our systems. The goal of our project is to successfully incorporate inducible promoters into our system to have them respond to HSLs and induce expression of GFP in E.coli. In addition, we hope to find undiscovered orthogonality between our senders and receivers. Hybrid promoters Ptra* and Prpa* were created by replacing the lux-box in the commonly used PluxI promoter with the tra-box and the rpa-box, respectively [2]. Using this idea, we created new receivers for our system with tra, rpa, and las genes to test in our experiments. In addition to this, new receivers of Bja [4], Aub [3], and Rhl [5] were created for testing. This was done by having a promoter from Lux and combining it with the specific regulator gene binding domain [2]. In addition to the inducible promoter, we also rearranged to order of our two part receiver system. The regulator and GFP were originally in that respective order. However, in our new receivers that orientation is switched. This was due to finding a leaky expression due to transcriptional read through of the receiver. By swapping the order, we can optimize the sequence to avoid transcriptional read through in our reporter gene. </p>
 
<p>Our team came across a paper by Spencer R Scott and Jeff Hasty from UC San Diego. They designed new inducible promoters that lead to better expression and easier cloning in their specific AHL related QS systems [2]. Due to this, our iGEM team utilized their thought and design process into our systems. The goal of our project is to successfully incorporate inducible promoters into our system to have them respond to HSLs and induce expression of GFP in E.coli. In addition, we hope to find undiscovered orthogonality between our senders and receivers. Hybrid promoters Ptra* and Prpa* were created by replacing the lux-box in the commonly used PluxI promoter with the tra-box and the rpa-box, respectively [2]. Using this idea, we created new receivers for our system with tra, rpa, and las genes to test in our experiments. In addition to this, new receivers of Bja [4], Aub [3], and Rhl [5] were created for testing. This was done by having a promoter from Lux and combining it with the specific regulator gene binding domain [2]. In addition to the inducible promoter, we also rearranged to order of our two part receiver system. The regulator and GFP were originally in that respective order. However, in our new receivers that orientation is switched. This was due to finding a leaky expression due to transcriptional read through of the receiver. By swapping the order, we can optimize the sequence to avoid transcriptional read through in our reporter gene. </p>
<p> Some broad descriptions of experiment ran are testing concentration of N-acyl homoserine lactone, testing combination of different senders, and testing induction and diffusion rates with senders and receivers. </p>
+
<p> Some broad descriptions of experiment ran are testing concentration of N-acyl homoserine lactone, testing combination of different senders, and testing induction and diffusion rates with senders and receivers. Below is the table of the 2 new receivers our iGEM team made.</p>
 +
 
 +
 
 +
<div class="container">
 +
<h2>Basic Parts</h2>
 +
 
 +
<table style="width:100%" align="center">
 +
<tr>
 +
    <th>Part Name</th>
 +
    <th>Part Number</th>
 +
    <th>Part Type</th>
 +
  </tr>
 +
  <tr>
 +
    <td> TraR </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_K2357028">BBa_B2357028</a> </td>
 +
    <td>Reciever</td>
 +
  </tr>
 +
  <tr>
 +
    <td> LasR </td>
 +
    <td> <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2357000">BBa_K2357000</a> </td>
 +
    <td>Receiver</td>
 +
 +
</table>
 +
 
 +
 
 +
</div>
  
  

Revision as of 01:51, 2 November 2017