Difference between revisions of "Team:Arizona State/Design"

 
(33 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
{{Arizona_State}}
 
<html>
 
<html>
 
<div class="column full_size">
 
<div class="column full_size">
 
<h1>Design for New Receivers</h1>
 
<h1>Design for New Receivers</h1>
 +
</div>
 +
 +
<div class="column full_size">
 +
<h2>Engineering Aims for ASU iGEM 2017 </h2>
 +
 
<p>
 
<p>
 
During the first steps of the design process, our iGEM team discussed what engineering aims our project wanted to achieve. It was an important first step in determining the goals for our research. We based our engineering aims on Endy's "Foundations for engineering biology," from 2005.  
 
During the first steps of the design process, our iGEM team discussed what engineering aims our project wanted to achieve. It was an important first step in determining the goals for our research. We based our engineering aims on Endy's "Foundations for engineering biology," from 2005.  
 
</p>
 
</p>
</div>
 
  
<div class="column half_size">
 
<h5>Engineering Aims for ASU iGEM 2017 </h5>
 
 
<ul>
 
<ul>
 
<li>Extending the natural function spectrum and expression of new genes</li>
 
<li>Extending the natural function spectrum and expression of new genes</li>
Line 17: Line 20:
  
 
<p>
 
<p>
After determining our engineering goals and aims for this year's competition. Our team needed to do background research into quorum sensing to familiarize ourselves with the terminology going to be used for this competition. In addition to this, our team needed to reaffirm the 2016 ASU iGEM team's data collected from last year before going any further with designing our project. While confirming last year's team data, we discovered a major flaw in their design process of the receivers. These receivers were showed poor expression and only a select few were good enough to characterize. In addition to this, the system these receivers were cloned into did not show a good cloning ratio. In fact, it was very difficult to clone these receivers. After this, we realized we need to re-evaluate these receivers to determine whether it was the system we were cloning them in was bad, or the receivers themselves that needed to be redesigned.  
+
After determining our engineering goals and aims for this year's competition. Our team needed to do background research into quorum sensing to familiarize ourselves with the terminology going to be used for this competition. In addition to this, our team needed to reaffirm the 2016 ASU iGEM team's data collected from last year before going any further with designing our project. While confirming last year's team data, we discovered a major flaws while running their protocols. These receivers were showed poor expression and only a select few were good enough to characterize. In addition to this, the system these receivers were cloned into did not show a good cloning ratio. In fact, it was very difficult to clone these receivers. After this, we realized we need to re-evaluate these receivers to determine whether it was the system we were cloning them in was bad, or the receivers themselves that needed to be redesigned.  
 
</p>
 
</p>
  
Line 28: Line 31:
  
 
<h2>Receiver Design Flowchart</h2>
 
<h2>Receiver Design Flowchart</h2>
<center><img src="https://static.igem.org/mediawiki/2017/8/87/R_flowchart.PNG" alt="Design Flowchart" style="max-width: 600px; width: 100%"></center>
+
<center><img src="https://static.igem.org/mediawiki/2017/8/87/R_flowchart.PNG" alt="Design Flowchart" style="max-width: 800px; width: 100%"></center>
  
 
</body>
 
</body>
Line 36: Line 39:
  
  
 +
<html>
 +
<body>
 +
 +
<h2>Receiver Design Flowchart for Cloning</h2>
 +
<center><img src="https://static.igem.org/mediawiki/2017/e/e4/Gblock_flowchart.PNG" alt="Design Flowchart 2" style="max-width: 900px; width: 100%"></center>
 +
 +
 +
 +
<center><img src="https://static.igem.org/mediawiki/2017/4/4a/Cloning_process_design.PNG" alt="Design Flowchart 3" style="max-width:900px; width: 100%"></center>
 +
 +
</body>
 +
</html>
  
 
<html>
 
<html>
</div>
+
<body>
  
<div class="column half_size">
+
<h2>Receiver Design</h2>
<h5>What should this page contain?</h5>
+
<center><img src="https://static.igem.org/mediawiki/2017/9/92/Receiver_design_with_sbol.PNG" alt="Design Flowchart 2" style="max-width: 900px; width: 100%"></center>
<ul>
+
<p> In our receiver design, there a multitude of parts attained that are already Bio-Brick verified. The table below shows the various parts from the BioBrick database used in our design. Promoters, ribosomal binding sites, terminators and green fluorescent protein were chosen. In addition to this information, the reason and description of how each works in our system is described.  
<li>Explanation of the engineering principles your team used in your design</li>
+
<li>Discussion of the design iterations your team went through</li>
+
<li>Experimental plan to test your designs</li>
+
<li>Endy, Drew. "Foundations for engineering biology." Nature 438.7067 (2005): 449</li>
+
</ul>
+
  
</div>
 
  
<div class="column half_size">
+
</body>
<h5>Inspiration</h5>
+
</html>
<ul>
+
<li><a href="https://2016.igem.org/Team:MIT/Experiments/Promoters">2016 MIT</a></li>
+
<li><a href="https://2016.igem.org/Team:BostonU/Proof">2016 BostonU</a></li>
+
<li><a href="https://2016.igem.org/Team:NCTU_Formosa/Design">2016 NCTU Formosa</a></li>
+
</ul>
+
</div>
+
  
  
 +
<html>
 +
 +
<table style="width:100%" align="center">
 +
<tr>
 +
    <th>Receiver Part Names</th>
 +
    <th>Part Number</th>
 +
    <th>Description</th>
 +
  </tr>
 +
  <tr>
 +
    <td> Ribosomal binding site for GFP </td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_B0032">BBa_B0032</a> </td>
 +
    <td> Stronger relative strength compared to other Ribosomal Binding Sites</td>
 +
  </tr>
 +
  <tr>
 +
    <td> Green Fluorescent Protein </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_E0040">BBa_E0040</a>  </td>
 +
    <td> Green fluorescent protein derived from jellyfish Aequeora victoria wild-type GFP </td>
 +
  </tr>
 +
  <tr>
 +
    <td> Terminator for Green Fluorescent Protein </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_J61048:Design">BBa_J61048</a> </td>
 +
    <td> Terminates the expression of GFP</td>
 +
  </tr>
 +
  <tr>
 +
    <td> Promoter for Receiver Protein </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_J23100">BBa_J23100</a> </td>
 +
    <td> Stronger promoter relative to the GFP promoter for stronger transcription </td>
 +
</td>
 +
  </tr>
 +
  <tr>
 +
    <td> Ribosomal Binding Site for Receiver Protein </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_B0034">BBa_B0034</a> </td>
 +
    <td>Ribosomal binding site for receiver protein </td>
 +
  </tr>
 +
  <tr>
 +
    <td> Terminator for Receiver Protein </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_B0015">BBa_B0015</a> </td>
 +
    <td> Strong terminator to end transcription of receiver promoter; A combination of RBS BBa_B0010 and BBa_B0012</td>
 +
  </tr>
 +
</table>
 +
 +
 +
 +
 +
 +
 +
 +
 +
 +
<h2>Senders Used in Our System</h2>
 +
<table style="width:100%" align="center">
 +
<tr>
 +
    <th>Sender Part Name</th>
 +
    <th>Part Number</th>
 +
    <th>Part Type</th>
 +
  </tr>
 +
  <tr>
 +
    <td>C12-HSL, N-(2-oxooxolan-3-yl)dodecanamide Sender-AubI </td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_K2033000">BBa_K2033000</a></td>
 +
    <td>Sender</td>
 +
  </tr>
 +
  <tr>
 +
    <td>Isovaleryl-HSL, 3-methyl-N-[(3S)-2-oxooxolan-3-yl]butanamide Sender-BjaI </td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_K2033002">BBa_K2033002</a></td>
 +
    <td>Sender</td>
 +
  </tr>
 +
  <tr>
 +
    <td>3-phenyl-HSL, (3S)-3-[(2-oxo-3-phenylpropyl)amino]oxolan-2-one Sender-BraI </td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_K2033004">BBa_K2033004</a></td>
 +
    <td>Sender</td>
 +
  </tr>
 +
  <tr>
 +
    <td>3OH-7-cis-C14-HSL, (Z)-3-hydroxy-N-[(3S)-2-oxooxolan-3-yl]tetradec-7-enamide Sender-CerI</td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_K2033006">BBa_K2033006</a></td>
 +
    <td>Sender</td>
 +
  </tr>
 +
  <tr>
 +
    <td>C8-HSL, N-[(3S)-2-oxooxolan-3-yl]octanamide Sender*-SinI</td>
 +
    <td><a href="http://parts.igem.org/Part:BBa_K2033008">BBa_K2033008</a></td>
 +
    <td>Sender</td>
 +
  </tr>
 +
</table>
 +
 +
<div class="container">
 +
<h2>2017 New Receiver Systems </h2>
 +
 +
<table style="width:100%" align="center">
 +
<tr>
 +
    <th>Part Name</th>
 +
    <th>Part Number</th>
 +
    <th>Part Type</th>
 +
  </tr>
 +
  <tr>
 +
    <td> TraR </td>
 +
    <td> <a href="http://parts.igem.org/Part:BBa_K2357028">BBa_K2357028</a> </td>
 +
    <td>Reciever</td>
 +
  </tr>
 +
  <tr>
 +
    <td> LasR </td>
 +
    <td> <a href="http://parts.igem.org/wiki/index.php?title=Part:BBa_K2357000">BBa_K2357000</a> </td>
 +
    <td>Receiver</td>
 +
 +
</table>
 
</div>
 
</div>
  
<div class="column half_size">
+
<div class="container">
<h5>References</h5>
+
<h2> iGEM F2620 Improvement  </h2>
 +
<table style="width:100%" align="center">
 +
<tr>
 +
    <th>Part Name</th>
 +
    <th>Part Number</th>
 +
    <th>Improvement</th>
 +
  </tr>
 +
    <tr>
 +
    <td> F2620 </td>
 +
    <td> <a href=" http://parts.igem.org/Part:BBa_F2620:Experience">BBa_F2620</a> </td>
 +
    <td>Reciever that our team further characterized and improved by running induction plates and various sender AHL experiments. In addition, safety for degrading and disposing. </td>
 +
  </tr>
 +
</table>
 +
</div>
 +
 
 +
 
 +
<h2>References</h2>
 
<p>
 
<p>
 
[1] Endy, Drew. "Foundations for engineering biology." Nature 438.7067 (2005): 449
 
[1] Endy, Drew. "Foundations for engineering biology." Nature 438.7067 (2005): 449
 
</p>
 
</p>
 +
<p> [2] “PCR Cycling Parameters—Six Key Considerations for Success.” Thermo Fisher Scientific, Thermo Fisher Scientific. Web. 20 Oct. 2017. </p>
 +
</div>
 
</html>
 
</html>

Latest revision as of 02:44, 2 November 2017