Difference between revisions of "Team:IISc-Bangalore"

Line 30: Line 30:
 
<div class="section">
 
<div class="section">
 
           <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/4/45/T--IISc-Bangalore--home-3.gif'); background-position: left;"></div>
 
           <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/4/45/T--IISc-Bangalore--home-3.gif'); background-position: left;"></div>
           <div style="position: absolute; right: 5%; width: 35%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins'; top: 50%; transform: translateY(-50%);">Buoyancy scales with volume while Stokes’ drag scales with effective radius: Our modelling shows clusters of GVs float enormously better than individual GVs</div>
+
           <div style="position: absolute; right: 5%; width: 35%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins'; top: 50%; transform: translateY(-50%);">Our modelling shows clusters of GVs that float enormously better than individual GVs.</div>
 
         </div>
 
         </div>
  
Line 36: Line 36:
 
         <div class="section">
 
         <div class="section">
 
           <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/7/71/T--IISc-Bangalore--home-4.gif'); background-position: right;"></div>
 
           <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/7/71/T--IISc-Bangalore--home-4.gif'); background-position: right;"></div>
 +
          <div style="position: absolute; left: 3%; width: 33%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins', sans-serif; top: 55%; transform: translateY(-50%);">Our project iFLOAT aims to improve the flotation of gas vesicles by clustering them using three distinct methods — charge-based flocculation, biotin-streptavidin interaction, and SpyCatcher-SpyTag heterodimerization</div>
 
         </div>
 
         </div>
  

Revision as of 02:46, 2 November 2017

Gas vesicles (GVs) are hollow protein nanostructures synthesized by phototrophic haloarchaea and cyanobacteria to regulate their flotation in aquatic habitats.
Bioengineered GVs have been genetically modified for diverse purposes; ultrasonic molecular imaging, gauging cellular turgor pressures, and vaccine delivery - but none of their current applications exploits their most fundamental characteristic: buoyancy.
Our modelling shows clusters of GVs that float enormously better than individual GVs.
Our project iFLOAT aims to improve the flotation of gas vesicles by clustering them using three distinct methods — charge-based flocculation, biotin-streptavidin interaction, and SpyCatcher-SpyTag heterodimerization
Something