Difference between revisions of "Team:TokyoTech/Description"

 
(97 intermediate revisions by 3 users not shown)
Line 7: Line 7:
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<meta name="viewport" content="width=device-width, initial-scale=1">
 
<link rel="stylesheet" href="main.css">
 
<link rel="stylesheet" href="main.css">
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Poppins">
 
 
<style>
 
<style>
body,h1,h2,h3,h4,h5 {font-family: "Poppins", sans-serif}
+
body,h1,h2,h3,h4,h5 {font-family: "Arial", sans-serif}
 
body {font-size:16px;}
 
body {font-size:16px;}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
 
.w3-half img{margin-bottom:-6px;margin-top:16px;opacity:0.8;cursor:pointer}
Line 15: Line 14:
 
</style>
 
</style>
 
<body>
 
<body>
 +
 +
<div id="loader-bg">
 +
  <div id="loader">
 +
    <div class="photo-show">
 +
    <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--load_1.png" width="600">
 +
    <img src="https://static.igem.org/mediawiki/2017/4/43/T--TokyoTech--load_2.png" width="600">
 +
    </div>
 +
  </div>
 +
</div>
  
 
<!-- Sidebar/menu -->
 
<!-- Sidebar/menu -->
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
 
<nav class="w3-sidebar w3-red w3-collapse w3-top w3-large w3-padding" style="z-index:3;width:300px;font-weight:bold;" id="mySidebar"><br>
 
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:20px">Close Menu</a>
 
   <a href="javascript:void(0)" onclick="w3_close()" class="w3-button w3-hide-large w3-display-topleft" style="width:100%;font-size:20px">Close Menu</a>
   <div class="w3-container" style="margin-top: 20px;margin-bottom: 25px">
+
   <div class="w3-container" style="margin-top: 20px;margin-bottom: 25px" id="wrap">
 
     <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TokyoTech--logo_white_bright_10211603.png" style="width: 100%">
 
     <img src="https://static.igem.org/mediawiki/2017/a/a8/T--TokyoTech--logo_white_bright_10211603.png" style="width: 100%">
 
   </div>
 
   </div>
  
   <div style="padding-top: 15px; padding-left: 25px;">
+
   <div style="padding-top: 15px; padding-left: 25px; id="wrap">
  
 
   <div id="contents" style="z-index: 10">
 
   <div id="contents" style="z-index: 10">
Line 50: Line 58:
 
     <label for="vmcb-d"><a>Experiment</a></label>
 
     <label for="vmcb-d"><a>Experiment</a></label>
 
     <ul>
 
     <ul>
         <li style="padding-bottom: 10px; padding-top: 10px">
+
 
 +
         <li>
 
         <input type="checkbox" id="vmcb-d1" />
 
         <input type="checkbox" id="vmcb-d1" />
          <label for="vmcb-d1"><a style="text-align: center;">Bacteria <br>to Human Cells ▼</a></label>
+
        <label for="vmcb-d1"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Overview" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">Overview</a></label>
 +
        </li>
 +
 
 +
        <li style="padding-bottom: 10px; padding-top: 5px">
 +
        <input type="checkbox" id="vmcb-d2" />
 +
          <label for="vmcb-d2"><a style="text-align: center;">Bacteria to <br>Human Cells ▼</a></label>
 
             <ul>
 
             <ul>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Impovement <br>Assay</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Improvement <br>Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br> Assay</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br>Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br> Analysis</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br>Analysis</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Chimeric <br> Transcription <br> Factor Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Chimeric <br> Transcription <br> Factor Assay</a></li>
 
             </ul>
 
             </ul>
 
       </li>
 
       </li>
  
       <li style="padding-bottom: 10px">
+
       <li style="padding-bottom: 3px">
       <input type="checkbox" id="vmcb-d2" />
+
       <input type="checkbox" id="vmcb-d3" />
     <label for="vmcb-d2"><a style="text-align: center;">Human Cells to Bacteria ▼</a></label>
+
     <label for="vmcb-d3"><a style="text-align: center;">Human Cells to <br>Bacteria ▼</a></label>
 
         <ul>
 
         <ul>
 
           <li><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">AHK4 Assay</a></li>
 
           <li><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">AHK4 Assay</a></li>
Line 70: Line 84:
 
         </li>
 
         </li>
  
         <li style="padding-bottom: 10px">
+
         <li>
         <input type="checkbox" id="vmcb-d3" />
+
         <input type="checkbox" id="vmcb-d4" />
     <label for="vmcb-d3"><a href="https://2017.igem.org/Team:TokyoTech/InterLab" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">InterLab</a></label>
+
     <label for="vmcb-d4"><a href="https://2017.igem.org/Team:TokyoTech/InterLab" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" style="text-align: center;">InterLab</a></label>
 
         </li>
 
         </li>
 
     </ul>
 
     </ul>
Line 89: Line 103:
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Overview</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Overview</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Silver" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Silver</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Silver" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Silver</a></li>
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Gold_Integrated" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Integrated <br> Human Practice</a></li>
+
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/HP/Gold_Integrated" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Gold (Integrated)</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Demonstrate" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Demonstrate</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Demonstrate" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Demonstrate</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Collaborations" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Collaborations</a></li>
 
     <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Collaborations" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Collaborations</a></li>
Line 124: Line 138:
 
<div class="w3-container" id="contact" style="margin-top:30px"><!-- ページタイトル -->
 
<div class="w3-container" id="contact" style="margin-top:30px"><!-- ページタイトル -->
 
       <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px" align="center">Project Description</h1>
 
       <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px" align="center">Project Description</h1>
 +
    </div>
 +
 +
<hr>
 +
 +
<div class="w3-container" id="contact" style="margin-top:30px">
 +
        <h2 class="w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><span>Contents</span></h1>
 +
        <h3 style="text-indent: 1em;font-size: 16px"><a href="#intro">i. Introduction</a></h3>
 +
        <h3 style="text-indent: 1em;font-size: 16px"><a href="#goal">ii. Goal and Approach</a></h3>
 +
        <h3 style="text-indent: 1em;font-size: 16px"><a href="#mecha">iii. Mechanism</a></h3>
 +
        <h3 style="text-indent: 1em;font-size: 16px"><a href="#result">iv. Results</a></h3>
 +
        <h3 style="text-indent: 1em;font-size: 16px"><a href="#hp">v. Human Practices</a></h3>
 
     </div>
 
     </div>
  
Line 129: Line 154:
  
 
   <!-- Overview -->
 
   <!-- Overview -->
   <div class="w3-container" id="overview" style="margin-top:20px">
+
   <div class="w3-container" id="intro" style="margin-top:20px">
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Background</b></h1>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Introduction</b></h1>
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
  
     <p style="font-size: 16px; text-indent:1em">How can we define a human organism? Is it simply a group of human cells? It's said that in our body, there exist not only 3.0*10^13 human cells but also 3.8*10^13 bacteria. That means the mass of bacteria reaches 0.2 kg. Bacteria and human have co-existed for a long time, for instance, intestinal flora and oral flora and it's obvious that bacteria play an important role in our body. As a way to improve one's intestinal environment, recently, a new therapy that transplants intestinal flora in healthy body, has been developed. This example shows that if we can intentionally make specific strains of bacteria stay in our body, it may be possible to change our characteristics.
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">
    </p><br>
+
    How can we define a human organism? Is it simply a group of human cells? It's said that in our body, there exist not only 3.0*10<sup>13</sup> human cells but also 3.8*10<sup>13</sup> bacteria. That means the mass of bacteria reaches 0.2 kg. In other words, humans are not solely composed of human cells. However, in iGEM community, it's been a standard to use single organism in project and it's not an overstatement that most teams don't take it into account that in a real world, multiple kinds of organisms co-exist and the ecosystem is sustained by their mutual dependence. Therefore, to target "true human organism", it's necessary to establish the system that human cells and bacteria co-exist under in vitro conditions. Therefore, we decided to establish co-culture system between human cells and bacteria.</p>
 
+
    <p style="font-size: 16px; text-indent:1em">To sum up, we'd like to define a human organism as "an organism in which human cells and bacteria co-exist." In iGEM community, it's been a standard to use single organism in project and it's not an overstatement that most teams don't take it into account that in a real world, multiple kinds of organisms co-exist and the ecosystem is sustained by their mutual dependence. Therefore, to target "true human organism", it's necessary to establish the system that human cells and bacteria co-exist under <span style="font-style: italic">in vitro</span>conditions.
+
    </p><br>
+
 
+
    <p style="font-size: 16px; text-indent:1em">In previous iGEM projects, two teams from 2011 and 2014 competitions tried to co-culture human cells and bacteria. However, the former team couldn't obtain persuasive data and Team ETH Zurich in 2014 set the goal as a short-term co-culture, which means that they didn't establish a system that co-cultures them for a long term.
+
    </p><br>
+
 
+
    <p style="font-size: 16px; text-indent:1em">
+
    As long as we can assume, there are the following reasons that interfere the establishment of co-culture system.
+
    </p><br>
+
    <ul style="padding-left: 2em">
+
    <li style="font-size: 16px">- A growth rate of bacteria surpasses that of human cells.</li>
+
    <li style="font-size: 16px">- Few studies show signal exchange mechanism between them.</li>
+
    <li style="font-size: 16px">- Bacteria are usually excluded by human immune system.</li>
+
    </ul>
+
 
+
    <br>
+
 
+
    <p style="font-size: 16px; text-indent:1em">If we can establish a co-culture system, we can find a way to achieve population balance to sustain the co-existence and apply for a medical field like a cancer treatment. In addition, since human and bacteria have originally co-existed, the establishment of a co-culture system will contribute to the development of organism closer to life.
+
    </p><br>
+
 
+
  
 +
    <p style="font-size:16px;font-size: 16px; text-indent:1em">
 +
    If we can establish a co-culture system, we can find a way to achieve population balance to sustain the co-existence and apply for a medical field like a cancer treatment. If you can co-exist with photosynthetic bacteria or nitrogen fixing bacteria, you can photosynthesize or produce protein from air. If you could co-exist with bacteria, you could be a super human. We named this new type of human 'Coli Sapiens.'
 +
    </p>
  
 
   </div>
 
   </div>
Line 162: Line 169:
 
<hr>
 
<hr>
  
 
+
  <div class="w3-container" id="goal" style="margin-top:20px">
<!-- Project -->
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Goal and Approach</b></h1>
    <div class="w3-container" id="project" style="margin-top:20px">
+
     <h2 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Goal</b></h2>
+
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
  
    <p style="font-size: 16px; text-indent:1em">To establish an inter-kingdom communication system between bacteria and human cells, we tried to integrate an existing signalling transmission systems. In many studies, human signal transmission systems have been discovered. Also, in iGEM community, quorum sensing is famous as a bacterial cell-to-cell communication.
+
<p style="font-size:16px;text-indent: 1em; padding-bottom: 15px">Our original goals are as follows:</p>
    </p><br>
+
    <p style="font-size: 16px; text-indent:1em">
+
    One day, we found a previous publication that human cell can reveive AHL which is a signaling molecule used in quorum sensing. Based on the previous research, we decided to apply quorum sensing for the signal transmission from bacteria to human cells in our genetic circuit. However, according to a previous research, it's difficult that human cells synthesize AHL derived from bacteria. This is because AHL precursors need to be biosynthesized in human cells and to do so, we have to transduce nine kinds of genes (Bacteria II type fatty acid synthesis path) into human cells. Some studies show the attempts to make human cells synthesize AHL, but all the results are not successful.
+
    </p><br>
+
    <p style="font-size: 16px; text-indent:1em">
+
    For these reasons, we cannot introduce quorum sensing into bacterial co-culture system. In addition, after a series of transcriptome analysis, suitible compounds don't exist. In addition, compounds derived from human cells may influence not only bacteria but also other human cells. Thus, we decided to use plant hormones which are from neither bacteria nor human cells. According to some publications, this information processing mechanism unique to plants is also derived from bacteria and due to the similarity between them, the establishment of fusional signal transmission system is thought to be possible.
+
    </p><br>
+
  
    <p style="font-size: 16px; text-indent:1em">In this way, we established the following systems.
+
<center>
    </p><br>
+
<div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%; border-radius: 10px;">
 +
<h3 style="text-align: center; padding-bottom: 15px">
 +
Establishing an artificial cross-kingdom communication system between human cells and bacteria.</h3>
  
    <ul style="padding-left: 2em">
+
<p style="font-size:16px;font-size: 16px; text-indent:1em;text-align: center;">
    <li style="font-size: 16px">- Human cells and bacteria: Transcription control by integrating quorum sensing and NF-kB, transcription factor in mammalian cell
+
     To achieve the first goal,</b> we needed a new cell-to-cell communication system because native and direct communication systems between human cells and bacteria were little known. Thus, we decided to integrate signal transduction system among three kingdoms.
     </li>
+
</p>
    <li style="font-size: 16px">- Bacteria and plants: Transcription control by integrating signal transmission systems derived from bacteria and plants
+
    </li>
+
    </ul>
+
    <br>
+
  
    <p style="font-size: 16px; text-indent:1em">We'll describe each mechanism.
+
</div>
    </p><br>
+
  
    <p style="font-size: 16px; text-indent:1em">Population of bacteria is a key point for a co-culture of bacteria and human cells. If bacteria overgrow, their inhabitance shrink and they end up extingishing. Therefore, we thought it's necessary to establish a system to sense the population of <span style="font-style: italic">E. coli</span> and respond to the change. To this end, we refered a previous research on the integration of quorum sensing and eukaryotic transcription control.
+
<div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%; border-radius: 10px">
    </p><br>
+
<h3 style="text-align: center; padding-bottom: 15px">
 +
Creating a co-culture model using the cross-kingdom communication and designing ‘Coli Sapiens,a new type of human strengthened by bacteria</h3>
  
    <p style="font-size: 16px; padding-left:2em">
+
<p style="font-size:16px;font-size: 16px; text-indent:1em;text-align: center;">
    <u>Step1</u>: We transduced <span style="font-style: italic">traI</span> which codes C8 synthetase and as <span style="font-style: italic">E. coli</span> grow, C8 is synthesized and secreted. In human cells, the following two genes are transduced.
+
    To achieve the second goal, we chose the essential parts in a complex co-culture system between bacteria and human cells. The reason why co-existence between them has not been developed under <span style="font-style: italic;">in vitro</span> conditions is that a growth rate of bacteria surpasses that of human cells. Thus, when we designed the mathematical model, we emphasized a population of bacteria as one of the biggest factors to establish a co-culture system.
    </p>
+
</p>
 +
</div>
 +
</center>
  
    <ul>
+
</div>
      <li style="font-size: 16px; padding-left:3em">-
+
      <span style="font-style: italic">traR</span> which codes a receptor for C8 (one of signaling molecules in quorum sensing)
+
      </li>
+
      <li style="font-size: 16px; padding-left:3em">-
+
      relA-NLS-traR which includes transactivation domain of RelA in NF-kB
+
      </li>
+
    </ul>
+
  
    <p style="font-size: 16px; padding-left:2em">
+
<hr>
    In the fusional protein, TraR works as a DNA-binding domain and a part of RelA works as a chimeric transcription factor.
+
    </p>
+
  
    <p style="font-size: 16px; padding-left:2em"><u>Step2</u>: After the complex receives C8, the chimeric transcription factor structurally changes and the active dimer is formed.
+
  <div class="w3-container" id="mecha" style="margin-top:20px">
     </p>
+
     <h1 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Mechanism</b></h1>
 
+
     <hr style="width:50px;border:5px solid red" class="w3-round">
    <p style="font-size: 16px; padding-left:2em"><u>Step3</u>: TraR in the active factor binds tra box located upstream of the target gene.
+
    </p>
+
 
+
     <p style="font-size: 16px; padding-left:2em"><u>Step4</u>: RelA TAD activates CMV minimal promoter and the expression of the downstream gene is induced.
+
    </p><br>
+
  
    <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
      <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-bottom: 15px">
 +
      We established the following two systems.
 +
      </p>
 +
      <center>
 +
      <div style="padding: 10px; margin-bottom: 3px; border: 1px dotted #333333;width: 90%; border-radius: 10px">
 +
      <h4 style="text-align: center">Signal transduction system from bacteria to humans</h4>
 +
      <h5 style="text-align: center">~ Integration of systems derived from bacteria and humans ~</h5>
 +
      <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
 +
      In this signal transduction system, the transcription level is controlled by integrating quorum sensing (bacterial cell-to-cell communication) and NF-kB, transcription factor in mammalian cell. We used this system the signal transduction from bacteria to human cells.
 +
      </p>
 +
      <div class="w3-xxxlarge" style="padding-bottom: 3px;text-align: center">
 
       <figure>
 
       <figure>
       <img src="https://static.igem.org/mediawiki/2017/1/15/T--TokyoTech--b_to_h.png" style="max-width:70%">
+
       <img src="https://static.igem.org/mediawiki/2017/e/e6/T--TokyoTech--bacteriatohuman.png" style="max-width:80%">
       <figcaption style="font-size: 16px">Fig. 画像タイトル</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 1 Mechanism of signal transduction system from bacteria to human</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
  
    <p style="font-size: 16px; text-indent:1em">
+
     
      In this way, we established fusional signal transmission system between bacteria and human cells. In addition to this system, human cells have to produce growth inhibition factors against bacteria. As described before, this signal must interact with not other human cells but only <span style="font-style: italic">E. coli</span>. Therefore, we decided to use one of plant hormones, cytokinin. This time, we chose iP (isopentenyl adenine from <span style="font-style: italic">A. thaliana</span>) One reason is the plant hormones don't affect the other mechanisms in human cell. The other is the signal transmission system of cytokinin is derived from TCS and the cytokinin can work as a signal for bacteria. Also, it was one of the important factors that we had to transduce only two genes for iP synthesis. In this system, two TCSs from <span style="font-style: italic">E. coli</span> and plant are integrated and iP works as a growth inhibition signal for <span style="font-style: italic">E. coli</span>.
+
      <div onclick="obj=document.getElementById('menu1').style; obj.display=(obj.display=='none')?'block':'none';" style="text-align: center;" style="margin-bottom: 30px"><a style="cursor:pointer;"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px">▼ Click here for more detail</button></a></div>
    </p><br>
+
  
      
+
      <div id="menu1" style="display:none;clear:both;padding-top: 20px;text-align: center;">
 +
        <p style="font-size: 16px; ">
 +
     <u>Step1</u>: We transduced <span style="font-style: italic">traI</span> which codes C8 synthetase and as <span style="font-style: italic">E. coli</span> grow, C8 is synthesized and secreted. In human cells, the following two genes are transduced. In the fusional protein, TraR works as a DNA-binding domain and a part of RelA works as a chimeric transcription factor.
 +
    </p>
 +
    <p style="font-size: 16px; "><u>Step2</u>: After the complex receives C8, the chimeric transcription factor structurally changes and the active dimer is formed.
 +
    </p>
  
    <h5 style="font-size: 16px; text-indent:1em">
+
     <p style="font-size: 16px; "><u>Step3</u>: TraR in the active factor binds tra box located upstream of the target gene.
    TCS of <span style="font-style: italic">E. coli</span>
+
    </h5>
+
 
+
     <p style="font-size: 16px; padding-left:2em">
+
    <u>Step1</u>: RcsC, which <span style="font-style: italic">E. coli</span> originally has, works as both receptor and His kinase and after it receives stimulus, self-phosphoration occurs.
+
 
     </p>
 
     </p>
  
     <p style="font-size: 16px; padding-left:2em"><u>Step2, 3, 4</u>: Phosphoryl group transfers and eventually, the phosphoryl group reaches and binds RcsB, a responce regulator. A series of the reactions is called phosphrelay.
+
     <p style="font-size: 16px; "><u>Step4</u>: RelA Trans Activation Domain (TAD) activates CMV minimal promoter and the expression of the downstream gene is induced. As a result, iP is produced and diffuses out of the cell.
 
     </p>
 
     </p>
 +
      </div>
 +
   
  
    <p style="font-size: 16px; padding-left:2em">Step 5: Phosphorylated RcsB binds RcsA and a hetero-dimer is formed. The hetero-dimer binds transcription regulation region in cps operon and the downstream gene is expressed.
+
      </div>
    </p><br>
+
     
 +
      <br>
 +
 
 +
      <div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%;border-radius: 10px">
 +
      <h4 style="text-align: center">Signal transduction system from human cells to bacteria</h4>
 +
      <h5>~ Integration of systems derived from bacteria and plants ~</h5>
  
    <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
      <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
 +
      In this signal transduction system, the transcription level is controlled by integrating signal transduction systems derived from bacteria and plants. We used this system the signal transduction from human cells to bacteria.
 +
      </p>
 +
      <div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 
       <figure>
 
       <figure>
       <img src="https://static.igem.org/mediawiki/2017/0/04/T--TokyoTech--rcs.png" style="max-width:70%">
+
       <img src="https://static.igem.org/mediawiki/2017/5/5a/T--TokyoTech--humantobacteria.png" style="width:80%">
       <figcaption style="font-size: 16px">Fig. 画像タイトル</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 2 Mechanism of signal transduction system from human cells to bacteria</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
  
    <h5 style="font-size: 16px; text-indent:1em">
+
      <div onclick="obj=document.getElementById('menu2').style; obj.display=(obj.display=='none')?'block':'none';" style="text-align: center;" style="margin-bottom: 30px"><a style="cursor:pointer;"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px">▼ Click here for more detail</button></a></div>
    Fusional TCS
+
    </h5>
+
  
    <p style="font-size: 16px; text-indent:1em; padding-left: 1em">
+
      <div id="menu2" style="display:none;clear:both;padding-top: 20px;text-align: center;">
    This time, as for reporter <span style="font-style: italic">E. coli</span>, we knocked out native RcsC and instead, we transduced <span style="font-style: italic">ahk4</span> gene, which codes a iP receptor protein. In this genetic circuit, after AHK4 receives iP, Rcs TCS is activated. AHK4 is a identical protein to RcsC and according to previous studies, it can also work in <span style="font-style: italic">E. coli</span>.
+
        <p style="font-size: 16px; ">
    </p><br>
+
        <u>Step1</u>: AHK4 binding to iP performs an autophosphorylation reaction, transferring a phosphoryl group from ATP to a histidine residue of Histidine kinase (HK) domain. AHK4 transfers the phosphoryl group to its own internal receiver domain.
 +
        </p>
 +
        <p style="font-size: 16px; "><u>Step2</u>: The phosphoryl group of AHK4 is transferred the histidine-containing phosphotransmitter, RcsD.
 +
        </p>
  
    <p style="font-size: 16px; padding-left: 2em">
+
        <p style="font-size: 16px; "><u>Step3</u>: The phosphoryl group of RcsD is transferred the RcsB and RcsB is activated. Activated RcsB and another RR, RcsA form a hetero dimer and bind to cps operon promoter (which controls the production of polysaccharides). This series of phosphoryl group transmission is called the His-to-Asp phosphorelay (Read <a href=https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay>AHK4 Assay</a> page).
    <u>Step1</u>: After AHK4 receives iP, self-phosphorylation occurs.
+
        </p>
    </p>
+
  
    <p style="font-size: 16px; padding-left: 2em"><u>Step2, 3, 4</u>: Phosphoryl group transfers and eventually, the phosphoryl group reaches and binds RcsB, a responce regulator. A series of the reactions is called phosphrelay.
+
        <p style="font-size: 16px; "><u>Step4</u>: The transcription of the gene downstream cps operon promoter is activated. In our genetic circuits, the gene downstream cps operon promoter is <span style="font-style: italic;">mazF</span>. <span style="font-style: italic;">mazF</span> is the gene of a toxin-antitoxin system. Please read <a href=https://2017.igem.org/Team:TokyoTech/Model>Modelling</a> page about the details of toxin-antitoxin system and <span style="font-style: italic;">mazF</span>.
    </p>
+
        </p>
 +
      </div>
  
    <p style="font-size: 16px; padding-left: 2em">Step 5: Phosphorylated RcsB binds RcsA and a hetero-dimer is formed. The hetero-dimer binds transcription regulation region in cps operon and the downstream gene is expressed.
+
      </div>
    </p><br>
+
 
 +
<br>
 +
 
 +
      <div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%;border-radius: 10px">
 +
      <h4 style="text-align: center">Co-culture system</h4>
  
    <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
      <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
 +
      We conducted experiments to validate the two systems above. Based on the results, we virtually integrated the two systems and conducted population change simulations.
 +
      </p>
 +
      <div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 
       <figure>
 
       <figure>
       <img src="https://static.igem.org/mediawiki/2017/f/f5/T--TokyoTech--h_to_b.png" style="max-width:70%">
+
       <img src="https://static.igem.org/mediawiki/2017/a/a9/T--TokyoTech--circuit_map.jpg" style="width:80%">
       <figcaption style="font-size: 16px">Fig. 画像タイトル</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 3 Mechanism of co-culture system</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
  
    <p style="font-size: 16px; text-indent:1em">
+
      <div style="text-align: center;" style="margin-bottom: 30px"><a href="https://2017.igem.org/Team:TokyoTech/Model" target="_blank"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px">Go to Modelling Page</button></a></div>
    In this project, we transduced <span style="font-style: italic">mazF</span> gene which codes RNA interferase in sequences downstream of Cps promoter and designed a growth inhibition model for <span style="font-style: italic">E. coli</span>.
+
    </p><br>
+
  
   
+
      </div>
  
    <p style="font-size: 16px; text-indent:1em">
+
      </center>
    By using these two signal transmission systems, we established the following co-culture system.
+
    </p><br>
+
  
     <p style="font-size: 16px; padding-left:2em"><u>Step1</u>: C8, an autoinducer AHL, is produced and released from E. coli. With increased population of E. coli, the concentration of C8 increases in the culture medium of human cells (EA.hy926) and E. coli.
+
     </div>
    </p>
+
<hr>
  
     <p style="font-size: 16px; padding-left:2em"><u>Step2</u>: C8 binds with TraR expressed in EA.hy926 cells, and RelA-TraR-C8 complex promotes the expression of AtIPT4 and LOG1 by the specific signal pathway. The more AtIPT4 and LOG1 expression is promoted, the more Isopentenyladenine (iP) molecules are synthesized in EA.hy926.
+
     <div class="w3-container" id="result" style="margin-top:20px">
     </p>
+
    <h2 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h2>
 +
     <hr style="width:50px;border:5px solid red" class="w3-round">
  
    <p style="font-size: 16px; padding-left:2em"><u>Step3</u>: EA.hy926-secreted iP binds with membrane receptor, AHK4, of E. coli.
 
    </p>
 
  
     <p style="font-size: 16px; padding-left:2em"><u>Step4</u>: iP activates AHK4 and His-Asp phosphorelay delivers phosphorylation signals . Eventually, it leads to activate CPS promoter and downstream mazF is expressed.
+
     <h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement">TraI Improvement</a></h3>
    </p>
+
  
     <p style="font-size: 16px; padding-left:2em"><u>Step5</u> Cleavage of mRNA by a toxin, MazF stops the protein synthesis and the growth of E. coli.
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of <span style="font-style: italic">E. coli</span>, the iP production rate of human cells and growth inhibition rate of <span style="font-style: italic">mazF</span>. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, <span style="font-style: italic">E. coli</span> overgrow.
 
     </p><br>
 
     </p><br>
  
   
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">To increase the C8 production rate, we improved the previous genetic circuits in two ways.
 
+
     <p style="font-size: 16px; text-indent:1em">To evaluate that this circuit actually works, we conducted the following assays.
+
    </p><br>
+
 
+
   
+
 
+
    <p style="font-size: 16px; text-indent:1em">Bacteria to human cells
+
 
     </p>
 
     </p>
  
     <ul style="padding-left:3em">
+
     <ul style="padding-left: 2em">
 
       <li style="font-size: 16px">-  
 
       <li style="font-size: 16px">-  
         Transducing <span style="font-style: italic">traI</span> which codes C8 synthetase, observing the capability of C8 production and secretion and measuring the amount
+
         Introducing various point mutations into CDS of the <span style="font-style: italic">traI</span> gene and finding a strain whose C8 production rate increases
 
       </li>
 
       </li>
 
       <li style="font-size: 16px">-  
 
       <li style="font-size: 16px">-  
         Transducing chimeric transcription factor (RelA/NLS/TraR) and inducive iP synthetase genes into human endothelial vascular cells (EA.hy926), and measuring the trascription level of the genes when C8 exist
+
         Adding SAM (one of the C8 materials) to culture medium and promoting the C8 production
 
       </li>
 
       </li>
 
     </ul><br>
 
     </ul><br>
  
     <p style="font-size: 16px; text-indent:1em">
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">As a result of the improvement, the concentration of C8 which <span style="font-style: italic">E. coli</span> produce increased by about 3-fold and it has been possible to induce iP synthesis in human cells from an early stage of <span style="font-style: italic">E. coli</span>'s growth.
     Human cells to bacteria
+
     </p><br>
 +
<center>
 +
<figure>
 +
<img src="https://static.igem.org/mediawiki/2017/3/32/T--TokyoTech--TraIimprove50.jpg" style="max-width:50%">
 +
    <figcaption style="font-size: 16px">Fig. 4 Improvement of C8 production by the K34G mutant (37℃ culture)</figcaption>
 +
    </figure>
 +
</center>
 +
 
 +
<hr>
 +
 
 +
  <h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor">Chimeric Transcription Factor</a></h3>
 +
 
 +
 
 +
    <p style="font-size:16px;font-size: 16px; text-indent:1em"> As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from <span style="font-style: italic">E. coli</span>. After the addition, we checked the transcription of <span style="font-style: italic">atIPT4</span> and <span style="font-style: italic">log1</span> (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.
 
     </p>
 
     </p>
 
+
<center>
    <ul style="padding-left:3em">
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
      <li style="font-size: 16px">-
+
    <figure>
        Measuring the activation level of fusional TCS after AHK4 on <span style="font-style: italic">E. coli</span>'s membrane receive iP, a signal from human cells.
+
    <img src="https://static.igem.org/mediawiki/2017/e/e9/Human_cell_result_v3.png" style="max-width:85%">
      </li>
+
    <figcaption style="font-size: 16px">Fig. 5 Result of the qualitative experiment</figcaption>
    </ul>
+
    </figure>
 +
    </div>
 +
    <p style="font-size: 16px">
 +
  The term “Cont” means the control cells that are not electroporated, while “EP” means the electroporated cells. The concentrations of added C8 are indicated below the bars.  
 +
</p>
 +
</center>
  
 
<hr>
 
<hr>
  
    <div class="w3-container" id="overview" style="margin-top:20px">
+
<h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay">AHK4 Assay</a></h3>
    <h2 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Results</b></h2>
+
    <hr style="width:50px;border:5px solid red" class="w3-round">
+
  
    <h3><span style="font-style: italic">traI</span> Improvement Assay</h3>
 
  
     <p style="font-size: 16px; text-indent:1em">At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of <span style="font-style: italic">E. coli</span>, the iP production rate of human cells and growth inhibition rate of <span style="font-style: italic">mazF</span>. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, <span style="font-style: italic">E. coli</span> overgrow.
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">We transduced <span style="font-style: italic">ahk4</span> into <span style="font-style: italic">E. coli</span> (KMI002 strain) and cultured them. Then, we added iP and after AHK4 received iP, cps promoter was activated and downstream <span style="font-style: italic">lacZ</span> is expressed. (<span style="font-style: italic">lacZ</span> expression was confirmed by blue-white screening.) In conclusion, it turned out that AHK4 can receive iP and induce the gene expression of the downstream genes, which means in a larger scale, <span style="font-style: italic">E. coli</span> can receive growth inhibition factors from human cells and inhibit the own growth.  
 
     </p><br>
 
     </p><br>
  
    <p style="font-size: 16px; text-indent:1em">To increase the C8 production rate, we improved the previous genetic circuits in two ways.
+
<center>
    </p>
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 +
    <figure>
 +
    <img src="https://static.igem.org/mediawiki/2017/archive/c/c7/20171028045916%21T--TokyoTech--AHK4qualitive.png" style="max-width:80%">
 +
    <figcaption style="font-size: 16px">Fig. 6  Result of the qualitative experiment</figcaption> </figure>
 +
        <p style="font-size:16px;font-size: 16px; text-indent:1em">Cells were grown at room temperature on LB agar plates with and without iP. β-galactosidase activity was monitored by X-gal. Photographs were taken after 25h incubation.</p>
 +
   
 +
    </div>
 +
</center>
  
    <ul style="padding-left: 2em">
+
<hr>
      <li style="font-size: 16px">-
+
        - Introducing various point mutations into CDS of the <span style="font-style: italic">traI</span> gene and finding a strain whose C8 production rate increases
+
      </li>
+
      <li style="font-size: 16px">-
+
        - Adding SAM (one of the C8 materials) to culture medium and promoting the C8 production
+
      </li>
+
    </ul><br>
+
  
    <p style="font-size: 16px; text-indent:1em">As a result of the improvement, the concentration of C8 which <span style="font-style: italic">E. coli</span> produce increased by about 100 folds and it has been possible to induce iP synthesis in human cells from an early stage of <span style="font-style: italic">E. coli</span>'s growth.
 
    </p><br>
 
  
    <h3>Chimeric Transcription Factor Assay</h3>
 
  
    <p style="font-size: 16px; text-indent:1em">As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from <span style="font-style: italic">E. coli</span>. After the addition, we checked the transcription of <span style="font-style: italic">atipt4</span> and <span style="font-style: italic">log1</span> (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.
+
<h4 style="text-align: center;margin-top:40px"><a href="https://2017.igem.org/Team:TokyoTech/Model">Simulation</a></h4>
    </p><br>
+
  
     <h3>AHK4 Assay</h3>
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">We again simulated the whole co-culture system using the parameter from assay data. The simulation showed that human cells have potential to control the population of <span style="font-style: italic">E. coli</span>, and both population settle to an appropriate ratio. In Fig. 7, u means the number of human cells and f means the flow rate.
  
    <p style="font-size: 16px; text-indent:1em">We transduced <span style="font-style: italic">ahk4</span> into <span style="font-style: italic">E. coli</span> (KMI002 strain) and cultured them. Then, we added iP and after AHK4 received iP, cps promoter was activated and downstream <span style="font-style: italic">lacZ</span> is expressed. (<span style="font-style: italic">lacZ</span> expression was confirmed by blue-white screening.) In conclusion, it turned out that AHK4 can receive iP and induce the gene expression of the downstream genes, which means in a larger scale, <span style="font-style: italic">E. coli</span> can receive growth inhibition factors from human cells and inhibit the own growth.
 
 
     </p><br>
 
     </p><br>
  
    <h3>Simulation</h3>
+
<center>
 +
<div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 +
      <figure>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--oveall.png" style="max-width:60%">
 +
      <figcaption style="font-size: 16px">Fig. 7 Condition of co-existence </figcaption>
 +
      </figure>
 +
      </div>
 +
</center>
  
    <p style="font-size: 16px; text-indent:1em">We simulated the whole co-culture system again using the assay data. The simulation result showed human cells can control the population of <span style="font-style: italic">E. coli</span> and the population oscillates.
 
    </p><br>
 
  
 
     </div>
 
     </div>
  
 +
<hr>
 +
 +
    <div class="w3-container" id="hp" style="margin-top:20px">
 +
    <h2 class="w3-xxxlarge w3-text-red" style="padding-bottom: 10px;padding-top: 10px"><b>Human Practices</b></h2>
 +
    <hr style="width:50px;border:5px solid red" class="w3-round">
 +
 +
      <div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
 +
      <figure>
 +
      <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--interaction_complete.png" style="max-width:95%">
 +
      <figcaption style="font-size: 16px">Fig. 8 Roadmap: How we integrated Human Practices and our experiment</figcaption>
 +
      </figure>
 +
      </div>
 +
 +
      <p style="font-size: 16px; text-indent: 1em;padding-bottom:20px">
 +
        From our full year experience in iGEM, we realized the necessity of verifying from a different point of view. In other words, we realized that we researchers ourselves must also continuously reflect on the risks and costs & benefits of the science we discover. In the workshop that we attended as our initial activity in iGEM, we learned from social scientists, the danger of grounding on the deficit model, which fixes on the idea that the general public is ignorant, and the importance of the two-way dialogue between society and researchers.
 +
      </p>
 +
 +
      <div style="text-align: center;" style="margin-bottom: 30px;margin-top:20px"><a href="https://2017.igem.org/Team:TokyoTech/HP" target="_blank"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px;margin-top:20px">Go to <br>Human Practices <br>Page</button></a></div>
 +
 +
    </div>
  
 
   </div>
 
   </div>
Line 381: Line 414:
  
 
<!-- End page content -->
 
<!-- End page content -->
 +
</div>
 +
 +
<div class="w3-container" id="contact" style="margin-top:20px">
 +
<p id="pageTop" style="text-align:right"><a href="#wrap"><img src="https://static.igem.org/mediawiki/2017/0/0d/T--TokyoTech--page_top_2.png" style="width:200px"></a></p>
 
</div>
 
</div>
  
 
<!-- W3.CSS Container -->
 
<!-- W3.CSS Container -->
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p><br></div>
+
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right"><a href="http://96haji.me/" title="W3.CSS" target="_blank" class="w3-hover-opacity">Hajime Fujita with W3.CSS: All Rights Reserved</a></p></div>
  
 +
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
 
<script>
 
<script>
 
// Script to open and close sidebar
 
// Script to open and close sidebar
Line 397: Line 435:
 
     document.getElementById("myOverlay").style.display = "none";
 
     document.getElementById("myOverlay").style.display = "none";
 
}
 
}
 
+
</script>
 +
<script>
 
// Modal Image Gallery
 
// Modal Image Gallery
 
function onClick(element) {
 
function onClick(element) {
Line 405: Line 444:
 
   captionText.innerHTML = element.alt;
 
   captionText.innerHTML = element.alt;
 
}
 
}
 +
$(function() {
 +
  var h = $(window).height();
 +
 +
  $('#wrap').css('display','none');
 +
  $('#loader-bg ,#loader').height(h).css('display','block');
 +
});
 +
 +
$(window).load(function () { //全ての読み込みが完了したら実行
 +
  $('#loader-bg').delay(900).fadeOut(800);
 +
  $('#loader').delay(600).fadeOut(300);
 +
  $('#wrap').css('display', 'block');
 +
});
 +
</script>
 +
<script>
 +
//■page topボタン
 +
$(function(){
 +
var topBtn=$('#pageTop');
 +
topBtn.hide();
 +
 +
//◇ボタンの表示設定
 +
$(window).scroll(function(){
 +
  if($(this).scrollTop()>80){
 +
    //---- 画面を80pxスクロールしたら、ボタンを表示する
 +
    topBtn.fadeIn();
 +
  }else{
 +
    //---- 画面が80pxより上なら、ボタンを表示しない
 +
    topBtn.fadeOut();
 +
  }
 +
});
 +
 +
// ◇ボタンをクリックしたら、スクロールして上に戻る
 +
topBtn.click(function(){
 +
  $('body,html').animate({
 +
  scrollTop: 0},500);
 +
  return false;
 +
});
 +
 +
});
 
</script>
 
</script>
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 03:24, 2 November 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech

Project Description



Introduction


How can we define a human organism? Is it simply a group of human cells? It's said that in our body, there exist not only 3.0*1013 human cells but also 3.8*1013 bacteria. That means the mass of bacteria reaches 0.2 kg. In other words, humans are not solely composed of human cells. However, in iGEM community, it's been a standard to use single organism in project and it's not an overstatement that most teams don't take it into account that in a real world, multiple kinds of organisms co-exist and the ecosystem is sustained by their mutual dependence. Therefore, to target "true human organism", it's necessary to establish the system that human cells and bacteria co-exist under in vitro conditions. Therefore, we decided to establish co-culture system between human cells and bacteria.

If we can establish a co-culture system, we can find a way to achieve population balance to sustain the co-existence and apply for a medical field like a cancer treatment. If you can co-exist with photosynthetic bacteria or nitrogen fixing bacteria, you can photosynthesize or produce protein from air. If you could co-exist with bacteria, you could be a super human. We named this new type of human 'Coli Sapiens.'


Goal and Approach


Our original goals are as follows:

Establishing an artificial cross-kingdom communication system between human cells and bacteria.

To achieve the first goal, we needed a new cell-to-cell communication system because native and direct communication systems between human cells and bacteria were little known. Thus, we decided to integrate signal transduction system among three kingdoms.

Creating a co-culture model using the cross-kingdom communication and designing ‘Coli Sapiens,’ a new type of human strengthened by bacteria

To achieve the second goal, we chose the essential parts in a complex co-culture system between bacteria and human cells. The reason why co-existence between them has not been developed under in vitro conditions is that a growth rate of bacteria surpasses that of human cells. Thus, when we designed the mathematical model, we emphasized a population of bacteria as one of the biggest factors to establish a co-culture system.


Mechanism


We established the following two systems.

Signal transduction system from bacteria to humans

~ Integration of systems derived from bacteria and humans ~

In this signal transduction system, the transcription level is controlled by integrating quorum sensing (bacterial cell-to-cell communication) and NF-kB, transcription factor in mammalian cell. We used this system the signal transduction from bacteria to human cells.

Fig. 1 Mechanism of signal transduction system from bacteria to human

Signal transduction system from human cells to bacteria

~ Integration of systems derived from bacteria and plants ~

In this signal transduction system, the transcription level is controlled by integrating signal transduction systems derived from bacteria and plants. We used this system the signal transduction from human cells to bacteria.

Fig. 2 Mechanism of signal transduction system from human cells to bacteria

Co-culture system

We conducted experiments to validate the two systems above. Based on the results, we virtually integrated the two systems and conducted population change simulations.

Fig. 3 Mechanism of co-culture system

Results


TraI Improvement

At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of E. coli, the iP production rate of human cells and growth inhibition rate of mazF. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, E. coli overgrow.


To increase the C8 production rate, we improved the previous genetic circuits in two ways.

  • - Introducing various point mutations into CDS of the traI gene and finding a strain whose C8 production rate increases
  • - Adding SAM (one of the C8 materials) to culture medium and promoting the C8 production

As a result of the improvement, the concentration of C8 which E. coli produce increased by about 3-fold and it has been possible to induce iP synthesis in human cells from an early stage of E. coli's growth.


Fig. 4 Improvement of C8 production by the K34G mutant (37℃ culture)

Chimeric Transcription Factor

As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from E. coli. After the addition, we checked the transcription of atIPT4 and log1 (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.

Fig. 5 Result of the qualitative experiment

The term “Cont” means the control cells that are not electroporated, while “EP” means the electroporated cells. The concentrations of added C8 are indicated below the bars.


AHK4 Assay

We transduced ahk4 into E. coli (KMI002 strain) and cultured them. Then, we added iP and after AHK4 received iP, cps promoter was activated and downstream lacZ is expressed. (lacZ expression was confirmed by blue-white screening.) In conclusion, it turned out that AHK4 can receive iP and induce the gene expression of the downstream genes, which means in a larger scale, E. coli can receive growth inhibition factors from human cells and inhibit the own growth.


Fig. 6 Result of the qualitative experiment

Cells were grown at room temperature on LB agar plates with and without iP. β-galactosidase activity was monitored by X-gal. Photographs were taken after 25h incubation.


Simulation

We again simulated the whole co-culture system using the parameter from assay data. The simulation showed that human cells have potential to control the population of E. coli, and both population settle to an appropriate ratio. In Fig. 7, u means the number of human cells and f means the flow rate.


Fig. 7 Condition of co-existence

Human Practices


Fig. 8 Roadmap: How we integrated Human Practices and our experiment

From our full year experience in iGEM, we realized the necessity of verifying from a different point of view. In other words, we realized that we researchers ourselves must also continuously reflect on the risks and costs & benefits of the science we discover. In the workshop that we attended as our initial activity in iGEM, we learned from social scientists, the danger of grounding on the deficit model, which fixes on the idea that the general public is ignorant, and the importance of the two-way dialogue between society and researchers.