Difference between revisions of "Team:TokyoTech/Description"

 
(28 intermediate revisions by 3 users not shown)
Line 69: Line 69:
 
             <ul>
 
             <ul>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Assay</a></li>
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Impovement <br>Assay</a></li>
+
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">TraI Improvement <br>Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br>Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraR_Reporter_Assay" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white" >TraR Reporter <br>Assay</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br>Analysis</a></li>
 
               <li style="text-align: center;"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Transcriptome_Analysis" onclick="w3_close()" class="w3-bar-item w3-button w3-hover-white">Transcriptome <br>Analysis</a></li>
Line 76: Line 76:
 
       </li>
 
       </li>
  
       <li style="padding-bottom: 10px">
+
       <li style="padding-bottom: 3px">
 
       <input type="checkbox" id="vmcb-d3" />
 
       <input type="checkbox" id="vmcb-d3" />
 
     <label for="vmcb-d3"><a style="text-align: center;">Human Cells to <br>Bacteria ▼</a></label>
 
     <label for="vmcb-d3"><a style="text-align: center;">Human Cells to <br>Bacteria ▼</a></label>
Line 173: Line 173:
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
 
     <hr style="width:50px;border:5px solid red" class="w3-round">
  
<p style="font-size:16px;text-indent: 1em">Our original goals are as follows:</p>
+
<p style="font-size:16px;text-indent: 1em; padding-bottom: 15px">Our original goals are as follows:</p>
  
 
<center>
 
<center>
Line 181: Line 181:
  
 
<p style="font-size:16px;font-size: 16px; text-indent:1em;text-align: center;">
 
<p style="font-size:16px;font-size: 16px; text-indent:1em;text-align: center;">
     To achieve the first goal,</b> we needed a new cell-to-cell communication system because native and direct communication systems between human cells and bacteria were little known. Thus, we decided to integrate signal transmission system among three kingdoms.  
+
     To achieve the first goal,</b> we needed a new cell-to-cell communication system because native and direct communication systems between human cells and bacteria were little known. Thus, we decided to integrate signal transduction system among three kingdoms.  
 
</p>
 
</p>
  
Line 209: Line 209:
 
       <center>
 
       <center>
 
       <div style="padding: 10px; margin-bottom: 3px; border: 1px dotted #333333;width: 90%; border-radius: 10px">
 
       <div style="padding: 10px; margin-bottom: 3px; border: 1px dotted #333333;width: 90%; border-radius: 10px">
       <h4 style="text-align: center">Signal transmission system from bacteria to humans</h4>
+
       <h4 style="text-align: center">Signal transduction system from bacteria to humans</h4>
 
       <h5 style="text-align: center">~ Integration of systems derived from bacteria and humans ~</h5>
 
       <h5 style="text-align: center">~ Integration of systems derived from bacteria and humans ~</h5>
 
       <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
 
       <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
       In our system, the transcription level is controlled by integrating quorum sensing (bacterial cell-to-cell communication) and NF-kB, transcription factor in mammalian cell. We used this system the signal transmission from bacteria to human cells.
+
       In this signal transduction system, the transcription level is controlled by integrating quorum sensing (bacterial cell-to-cell communication) and NF-kB, transcription factor in mammalian cell. We used this system the signal transduction from bacteria to human cells.
 
       </p>
 
       </p>
 
       <div class="w3-xxxlarge" style="padding-bottom: 3px;text-align: center">
 
       <div class="w3-xxxlarge" style="padding-bottom: 3px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/e/e6/T--TokyoTech--bacteriatohuman.png" style="max-width:80%">
 
       <img src="https://static.igem.org/mediawiki/2017/e/e6/T--TokyoTech--bacteriatohuman.png" style="max-width:80%">
       <figcaption style="font-size: 16px">Fig. 1 Mechanism of signal transmission system from bacteria to human</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 1 Mechanism of signal transduction system from bacteria to human</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
Line 244: Line 244:
  
 
       <div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%;border-radius: 10px">
 
       <div style="padding: 10px; margin-bottom: 10px; border: 1px dotted #333333;width: 90%;border-radius: 10px">
       <h4 style="text-align: center">Signal transmission system from human cells to bacteria</h4>
+
       <h4 style="text-align: center">Signal transduction system from human cells to bacteria</h4>
 
       <h5>~ Integration of systems derived from bacteria and plants ~</h5>
 
       <h5>~ Integration of systems derived from bacteria and plants ~</h5>
  
 
       <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
 
       <p style="font-size:16px;font-size: 16px; text-indent:1em;padding-top: 15px">
       In our system, the transcription level is controlled by integrating signal transmission systems derived from bacteria and plants. We used this system the signal transmission from human cells to bacteria.
+
       In this signal transduction system, the transcription level is controlled by integrating signal transduction systems derived from bacteria and plants. We used this system the signal transduction from human cells to bacteria.
 
       </p>
 
       </p>
 
       <div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 
       <div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/5/5a/T--TokyoTech--humantobacteria.png" style="width:80%">
 
       <img src="https://static.igem.org/mediawiki/2017/5/5a/T--TokyoTech--humantobacteria.png" style="width:80%">
       <figcaption style="font-size: 16px">Fig. 2 Mechanism of signal transmission system from human cells to bacteria</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 2 Mechanism of signal transduction system from human cells to bacteria</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
Line 290: Line 290:
 
       </div>
 
       </div>
  
 
+
      <div style="text-align: center;" style="margin-bottom: 30px"><a href="https://2017.igem.org/Team:TokyoTech/Model" target="_blank"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px">Go to Modelling Page</button></a></div>
  
 
       </div>
 
       </div>
Line 304: Line 304:
  
  
     <h4 style="text-align: center"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement">TraI Improvement</a></h4>
+
     <h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/TraI_Improvement">TraI Improvement</a></h3>
  
 
     <p style="font-size:16px;font-size: 16px; text-indent:1em">At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of <span style="font-style: italic">E. coli</span>, the iP production rate of human cells and growth inhibition rate of <span style="font-style: italic">mazF</span>. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, <span style="font-style: italic">E. coli</span> overgrow.
 
     <p style="font-size:16px;font-size: 16px; text-indent:1em">At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of <span style="font-style: italic">E. coli</span>, the iP production rate of human cells and growth inhibition rate of <span style="font-style: italic">mazF</span>. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, <span style="font-style: italic">E. coli</span> overgrow.
Line 321: Line 321:
 
     </ul><br>
 
     </ul><br>
  
     <p style="font-size:16px;font-size: 16px; text-indent:1em">As a result of the improvement, the concentration of C8 which <span style="font-style: italic">E. coli</span> produce increased by about 100 folds and it has been possible to induce iP synthesis in human cells from an early stage of <span style="font-style: italic">E. coli</span>'s growth.
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em">As a result of the improvement, the concentration of C8 which <span style="font-style: italic">E. coli</span> produce increased by about 3-fold and it has been possible to induce iP synthesis in human cells from an early stage of <span style="font-style: italic">E. coli</span>'s growth.
 
     </p><br>
 
     </p><br>
 
<center>
 
<center>
 
<figure>
 
<figure>
 
  <img src="https://static.igem.org/mediawiki/2017/3/32/T--TokyoTech--TraIimprove50.jpg" style="max-width:50%">
 
  <img src="https://static.igem.org/mediawiki/2017/3/32/T--TokyoTech--TraIimprove50.jpg" style="max-width:50%">
     <figcaption style="font-size: 16px">Fig. 3 Improvement of C8 production by the K34G mutant (37℃ culture)</figcaption>
+
     <figcaption style="font-size: 16px">Fig. 4 Improvement of C8 production by the K34G mutant (37℃ culture)</figcaption>
 
     </figure>
 
     </figure>
 
</center>
 
</center>
Line 332: Line 332:
 
<hr>
 
<hr>
  
   <h4 style="text-align: center"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor">Chimeric Transcription Factor</a></h4>
+
   <h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/Chimeric_Transcription_Factor">Chimeric Transcription Factor</a></h3>
  
  
     <p style="font-size:16px;font-size: 16px; text-indent:1em">As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from <span style="font-style: italic">E. coli</span>. After the addition, we checked the transcription of <span style="font-style: italic">atIPT4</span> and <span style="font-style: italic">log1</span> (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.
+
     <p style="font-size:16px;font-size: 16px; text-indent:1em"> As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from <span style="font-style: italic">E. coli</span>. After the addition, we checked the transcription of <span style="font-style: italic">atIPT4</span> and <span style="font-style: italic">log1</span> (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.
 
     </p>
 
     </p>
 
<center>
 
<center>
Line 341: Line 341:
 
     <figure>
 
     <figure>
 
     <img src="https://static.igem.org/mediawiki/2017/e/e9/Human_cell_result_v3.png" style="max-width:85%">
 
     <img src="https://static.igem.org/mediawiki/2017/e/e9/Human_cell_result_v3.png" style="max-width:85%">
     <figcaption style="font-size: 16px">Fig. 4 Result of the qualitative experiment</figcaption>
+
     <figcaption style="font-size: 16px">Fig. 5 Result of the qualitative experiment</figcaption>
 
     </figure>
 
     </figure>
 
     </div>
 
     </div>
 
     <p style="font-size: 16px">
 
     <p style="font-size: 16px">
The term “Cont” means the control cells that are not electroporated, while “EP” means the electroporated cells. The concentrations of added C8 are indicated below the bars.  
+
  The term “Cont” means the control cells that are not electroporated, while “EP” means the electroporated cells. The concentrations of added C8 are indicated below the bars.  
 
  </p>
 
  </p>
 
</center>
 
</center>
Line 351: Line 351:
 
<hr>
 
<hr>
  
<h4 style="text-align: center"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay">AHK4 Assay</a></h4>
+
<h3 style="text-align: center; margin-top:40px;margin-bottom:20px"><a href="https://2017.igem.org/Team:TokyoTech/Experiment/AHK4_Assay">AHK4 Assay</a></h3>
  
  
Line 361: Line 361:
 
     <figure>
 
     <figure>
 
     <img src="https://static.igem.org/mediawiki/2017/archive/c/c7/20171028045916%21T--TokyoTech--AHK4qualitive.png" style="max-width:80%">
 
     <img src="https://static.igem.org/mediawiki/2017/archive/c/c7/20171028045916%21T--TokyoTech--AHK4qualitive.png" style="max-width:80%">
     <figcaption style="font-size: 16px">Fig. 5 Result of the qualitative experiment</figcaption>  
+
     <figcaption style="font-size: 16px">Fig. 6 Result of the qualitative experiment</figcaption> </figure>
         <p style="font-size: 16px"><p style="text-indent:1em"> Cells were grown at room temperature on LB agar plates with and without iP. β-galactosidase activity was monitored by X-gal. Photographs were taken after 25h incubation.
+
         <p style="font-size:16px;font-size: 16px; text-indent:1em">Cells were grown at room temperature on LB agar plates with and without iP. β-galactosidase activity was monitored by X-gal. Photographs were taken after 25h incubation.</p>
    </figure>
+
   
 
     </div>
 
     </div>
 
</center>
 
</center>
Line 371: Line 371:
  
  
<h4 style="text-align: center"><a href="https://2017.igem.org/Team:TokyoTech/Model">Simulation</a></h4>
+
<h4 style="text-align: center;margin-top:40px"><a href="https://2017.igem.org/Team:TokyoTech/Model">Simulation</a></h4>
 +
 
 +
    <p style="font-size:16px;font-size: 16px; text-indent:1em">We again simulated the whole co-culture system using the parameter from assay data. The simulation showed that human cells have potential to control the population of <span style="font-style: italic">E. coli</span>, and both population settle to an appropriate ratio. In Fig. 7, u means the number of human cells and f means the flow rate.
  
    <p style="font-size:16px;font-size: 16px; text-indent:1em">We simulated the whole co-culture system again using the assay data. The simulation result showed human cells can control the population of <span style="font-style: italic">E. coli</span> and the population oscillates.
 
 
     </p><br>
 
     </p><br>
  
 
<center>
 
<center>
<div class="w3-xxxlarge" style="padding-bottom: 10px;padding-top: 10px;text-align: center">
+
<div class="w3-xxxlarge" style="padding-bottom: 10px;text-align: center">
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--oveall.png" style="max-width:60%">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f4/T--TokyoTech--oveall.png" style="max-width:60%">
       <figcaption style="font-size: 16px">Fig. 6 Condition of Co-existence </figcaption>
+
       <figcaption style="font-size: 16px">Fig. 7 Condition of co-existence </figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
Line 397: Line 398:
 
       <figure>
 
       <figure>
 
       <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--interaction_complete.png" style="max-width:95%">
 
       <img src="https://static.igem.org/mediawiki/2017/f/f8/T--TokyoTech--interaction_complete.png" style="max-width:95%">
       <figcaption style="font-size: 16px">Fig. 7 Roadmap: How we integrated Human Practices and our experiment</figcaption>
+
       <figcaption style="font-size: 16px">Fig. 8 Roadmap: How we integrated Human Practices and our experiment</figcaption>
 
       </figure>
 
       </figure>
 
       </div>
 
       </div>
  
       <p style="font-size: 16px; text-indent: 1em">
+
       <p style="font-size: 16px; text-indent: 1em;padding-bottom:20px">
 
         From our full year experience in iGEM, we realized the necessity of verifying from a different point of view. In other words, we realized that we researchers ourselves must also continuously reflect on the risks and costs & benefits of the science we discover. In the workshop that we attended as our initial activity in iGEM, we learned from social scientists, the danger of grounding on the deficit model, which fixes on the idea that the general public is ignorant, and the importance of the two-way dialogue between society and researchers.
 
         From our full year experience in iGEM, we realized the necessity of verifying from a different point of view. In other words, we realized that we researchers ourselves must also continuously reflect on the risks and costs & benefits of the science we discover. In the workshop that we attended as our initial activity in iGEM, we learned from social scientists, the danger of grounding on the deficit model, which fixes on the idea that the general public is ignorant, and the importance of the two-way dialogue between society and researchers.
 
       </p>
 
       </p>
 +
 +
      <div style="text-align: center;" style="margin-bottom: 30px;margin-top:20px"><a href="https://2017.igem.org/Team:TokyoTech/HP" target="_blank"><button class="w3-button w3-red w3-padding-large w3-hover-black" style="font-size: 20px; margin-bottom: 30px;margin-top:20px">Go to <br>Human Practices <br>Page</button></a></div>
  
 
     </div>
 
     </div>
Line 411: Line 414:
  
 
<!-- End page content -->
 
<!-- End page content -->
 +
</div>
 +
 +
<div class="w3-container" id="contact" style="margin-top:20px">
 +
<p id="pageTop" style="text-align:right"><a href="#wrap"><img src="https://static.igem.org/mediawiki/2017/0/0d/T--TokyoTech--page_top_2.png" style="width:200px"></a></p>
 
</div>
 
</div>
  
 
<!-- W3.CSS Container -->
 
<!-- W3.CSS Container -->
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right">Hajime Fujita:  <a href="96haji.me" title="W3.CSS" target="_blank" class="w3-hover-opacity">All Rights Reserved</a></p><br></div>
+
<div class="w3-light-grey w3-container w3-padding-32" style="margin-top:75px;padding-right:58px"><p class="w3-right"><a href="http://96haji.me/" title="W3.CSS" target="_blank" class="w3-hover-opacity">Hajime Fujita with W3.CSS: All Rights Reserved</a></p></div>
  
 +
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.11.1/jquery.min.js"></script>
 
<script>
 
<script>
 
// Script to open and close sidebar
 
// Script to open and close sidebar
Line 427: Line 435:
 
     document.getElementById("myOverlay").style.display = "none";
 
     document.getElementById("myOverlay").style.display = "none";
 
}
 
}
 
+
</script>
 +
<script>
 
// Modal Image Gallery
 
// Modal Image Gallery
 
function onClick(element) {
 
function onClick(element) {
Line 435: Line 444:
 
   captionText.innerHTML = element.alt;
 
   captionText.innerHTML = element.alt;
 
}
 
}
 +
$(function() {
 +
  var h = $(window).height();
 +
 +
  $('#wrap').css('display','none');
 +
  $('#loader-bg ,#loader').height(h).css('display','block');
 +
});
 +
 +
$(window).load(function () { //全ての読み込みが完了したら実行
 +
  $('#loader-bg').delay(900).fadeOut(800);
 +
  $('#loader').delay(600).fadeOut(300);
 +
  $('#wrap').css('display', 'block');
 +
});
 +
</script>
 +
<script>
 +
//■page topボタン
 +
$(function(){
 +
var topBtn=$('#pageTop');
 +
topBtn.hide();
 +
 +
//◇ボタンの表示設定
 +
$(window).scroll(function(){
 +
  if($(this).scrollTop()>80){
 +
    //---- 画面を80pxスクロールしたら、ボタンを表示する
 +
    topBtn.fadeIn();
 +
  }else{
 +
    //---- 画面が80pxより上なら、ボタンを表示しない
 +
    topBtn.fadeOut();
 +
  }
 +
});
 +
 +
// ◇ボタンをクリックしたら、スクロールして上に戻る
 +
topBtn.click(function(){
 +
  $('body,html').animate({
 +
  scrollTop: 0},500);
 +
  return false;
 +
});
 +
 +
});
 
</script>
 
</script>
  
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 03:24, 2 November 2017

<!DOCTYPE html> Coli Sapiens

iGEM Tokyo Tech

Project Description



Introduction


How can we define a human organism? Is it simply a group of human cells? It's said that in our body, there exist not only 3.0*1013 human cells but also 3.8*1013 bacteria. That means the mass of bacteria reaches 0.2 kg. In other words, humans are not solely composed of human cells. However, in iGEM community, it's been a standard to use single organism in project and it's not an overstatement that most teams don't take it into account that in a real world, multiple kinds of organisms co-exist and the ecosystem is sustained by their mutual dependence. Therefore, to target "true human organism", it's necessary to establish the system that human cells and bacteria co-exist under in vitro conditions. Therefore, we decided to establish co-culture system between human cells and bacteria.

If we can establish a co-culture system, we can find a way to achieve population balance to sustain the co-existence and apply for a medical field like a cancer treatment. If you can co-exist with photosynthetic bacteria or nitrogen fixing bacteria, you can photosynthesize or produce protein from air. If you could co-exist with bacteria, you could be a super human. We named this new type of human 'Coli Sapiens.'


Goal and Approach


Our original goals are as follows:

Establishing an artificial cross-kingdom communication system between human cells and bacteria.

To achieve the first goal, we needed a new cell-to-cell communication system because native and direct communication systems between human cells and bacteria were little known. Thus, we decided to integrate signal transduction system among three kingdoms.

Creating a co-culture model using the cross-kingdom communication and designing ‘Coli Sapiens,’ a new type of human strengthened by bacteria

To achieve the second goal, we chose the essential parts in a complex co-culture system between bacteria and human cells. The reason why co-existence between them has not been developed under in vitro conditions is that a growth rate of bacteria surpasses that of human cells. Thus, when we designed the mathematical model, we emphasized a population of bacteria as one of the biggest factors to establish a co-culture system.


Mechanism


We established the following two systems.

Signal transduction system from bacteria to humans

~ Integration of systems derived from bacteria and humans ~

In this signal transduction system, the transcription level is controlled by integrating quorum sensing (bacterial cell-to-cell communication) and NF-kB, transcription factor in mammalian cell. We used this system the signal transduction from bacteria to human cells.

Fig. 1 Mechanism of signal transduction system from bacteria to human

Signal transduction system from human cells to bacteria

~ Integration of systems derived from bacteria and plants ~

In this signal transduction system, the transcription level is controlled by integrating signal transduction systems derived from bacteria and plants. We used this system the signal transduction from human cells to bacteria.

Fig. 2 Mechanism of signal transduction system from human cells to bacteria

Co-culture system

We conducted experiments to validate the two systems above. Based on the results, we virtually integrated the two systems and conducted population change simulations.

Fig. 3 Mechanism of co-culture system

Results


TraI Improvement

At an early stage of our project, we simulated the whole co-culture system using parameters from the C8 production rate of E. coli, the iP production rate of human cells and growth inhibition rate of mazF. The simulation showed that the C8 production rate is not enough to induce the iP production and as a result, E. coli overgrow.


To increase the C8 production rate, we improved the previous genetic circuits in two ways.

  • - Introducing various point mutations into CDS of the traI gene and finding a strain whose C8 production rate increases
  • - Adding SAM (one of the C8 materials) to culture medium and promoting the C8 production

As a result of the improvement, the concentration of C8 which E. coli produce increased by about 3-fold and it has been possible to induce iP synthesis in human cells from an early stage of E. coli's growth.


Fig. 4 Improvement of C8 production by the K34G mutant (37℃ culture)

Chimeric Transcription Factor

As for human cells' constructs, we synthesized chimeric transcription factor and iP synthetase genes. In the assay, first, we transduced the constructs. Then, we cultured the cells in which the constructs are successfully transduced and added C8 from E. coli. After the addition, we checked the transcription of atIPT4 and log1 (part of iP synthetase genes) using transcriptome analysis. From this result, we concluded that human cells received C8 from bacteria and successfully produced iP.

Fig. 5 Result of the qualitative experiment

The term “Cont” means the control cells that are not electroporated, while “EP” means the electroporated cells. The concentrations of added C8 are indicated below the bars.


AHK4 Assay

We transduced ahk4 into E. coli (KMI002 strain) and cultured them. Then, we added iP and after AHK4 received iP, cps promoter was activated and downstream lacZ is expressed. (lacZ expression was confirmed by blue-white screening.) In conclusion, it turned out that AHK4 can receive iP and induce the gene expression of the downstream genes, which means in a larger scale, E. coli can receive growth inhibition factors from human cells and inhibit the own growth.


Fig. 6 Result of the qualitative experiment

Cells were grown at room temperature on LB agar plates with and without iP. β-galactosidase activity was monitored by X-gal. Photographs were taken after 25h incubation.


Simulation

We again simulated the whole co-culture system using the parameter from assay data. The simulation showed that human cells have potential to control the population of E. coli, and both population settle to an appropriate ratio. In Fig. 7, u means the number of human cells and f means the flow rate.


Fig. 7 Condition of co-existence

Human Practices


Fig. 8 Roadmap: How we integrated Human Practices and our experiment

From our full year experience in iGEM, we realized the necessity of verifying from a different point of view. In other words, we realized that we researchers ourselves must also continuously reflect on the risks and costs & benefits of the science we discover. In the workshop that we attended as our initial activity in iGEM, we learned from social scientists, the danger of grounding on the deficit model, which fixes on the idea that the general public is ignorant, and the importance of the two-way dialogue between society and researchers.