Difference between revisions of "Team:IISc-Bangalore"

 
(59 intermediate revisions by 2 users not shown)
Line 2: Line 2:
 
<html>
 
<html>
  
<div id="contentMain">
+
<link rel="stylesheet" type="text/css" href="https://2017.igem.org/Template:IISc-Bangalore/CSS?action=raw&ctype=text/css" />
 +
<style>
 +
    .textclass:hover {
 +
      text-decoration: none !important;
 +
    }
 +
</style>
 +
<div id="fullpage">
  
<h1>iFLOAT</h1>
 
  
<h2>a multifaceted approach to cluster bioengineered gas vesicles in vitro and enhance their flotation</h2>
+
<div class="section" style="background-image: url('https://static.igem.org/mediawiki/2017/8/84/T--IISc-Bangalore--gif-bg.png'); background-size: cover; background-repeat:no-repeat;">
 +
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/4/43/T--IISc-Bangalore--iFLOAT-final.gif');"></div>
 +
        </div>
  
<p>Gas vesicles (GVs) are hollow protein nanostructures synthesized by phototrophic haloarchaea and cyanobacteria to regulate their flotation in aquatic habitats. Bioengineered GVs have been genetically modified for diverse purposes including ultrasonic molecular imaging, gauging cellular turgor pressures, and vaccine delivery — harnessing unique acoustic, mechanical, and surface properties of GVs — but none of their current applications exploits their most fundamental characteristic: buoyancy.</p>
 
</html>
 
[[File:T--IISc-Bangalore--logo-new.png|300px|left]]
 
<html>
 
<p>Our modelling indicates that clusters of GVs float several orders of magnitude better than individual GVs, as buoyancy scales with volume while Stokes’ drag scales with effective radius. Our project iFLOAT aims to improve the flotation of gas vesicles by clustering them using three distinct methods — charge-based flocculation, biotin-streptavidin interaction, and SpyCatcher-SpyTag heterodimerization — and simultaneously develop robust, reproducible flotation assays. Potential future applications of buoyant clusters of bioengineered gas vesicles include bioremediation of oil spills and flotation-based separation and purification of specific targets from mixtures.</p>
 
  
</div>
+
<div class="section">
  
            <ol id="inPageNav">
+
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/2/21/T--IISc-Bangalore--home-1.gif'); background-position: left;"></div>
                <li>iFLOAT</li>
+
                <li>Gas vesicles</li>
+
                <li>Bioengineering</li>
+
                <li>The Problem</li>
+
                <li>Our Solutions</li>
+
            </ol>
+
  
 +
          <div style="position: absolute; right: 5%; width: 35%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins'; top: 50%; transform: translateY(-50%);">Gas vesicles (GVs) are hollow protein nanostructures synthesized by phototrophic haloarchaea and cyanobacteria to regulate their flotation in aquatic habitats. </div>
  
 +
        </div>
 +
 +
 +
<div class="section">
 +
 +
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/6/63/T--IISc-Bangalore--home-2.gif'); background-position: right;"></div>
 +
          <div style="position: absolute; left: 3%; width: 33%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins', sans-serif; top: 55%; transform: translateY(-50%);">Bioengineered GVs have been genetically modified for diverse purposes; ultrasonic molecular imaging, gauging cellular turgor pressures, and vaccine delivery - but none of their current applications exploit their most fundamental characteristic: buoyancy.</div>
 +
        </div>
 +
 +
 +
<div class="section">
 +
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/4/45/T--IISc-Bangalore--home-3.gif'); background-position: left;"></div>
 +
          <div style="position: absolute; right: 5%; width: 20%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins'; top: 55%; transform: translateY(-50%);">Our modelling shows that clusters of GVs float enormously better than individual GVs.</div>
 +
        </div>
 +
 +
 +
        <div class="section">
 +
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/7/71/T--IISc-Bangalore--home-4.gif'); background-position: right;"></div>
 +
          <div style="position: absolute; left: 3%; width: 30%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins', sans-serif; top: 55%; transform: translateY(-50%);">iFLOAT aims to improve the flotation of gas vesicles by clustering them using three distinct methods: charge-based flocculation, biotin-streptavidin interaction, and SpyCatcher-SpyTag heterodimerization</div>
 +
        </div>
 +
 +
 +
<div class="section">
 +
          <div class="gifAnimated" style="background-image: url('https://static.igem.org/mediawiki/2017/6/6a/T--IISc-Bangalore--home-5.gif'); background-position: left;"></div>
 +
          <div style="position: absolute; right: 5%; width: 25%; font-size: 2.3em; line-height: 1.4; font-family: 'Poppins'; top: 55%; transform: translateY(-50%);"> Future applications of these clusters can include bioremediation of oil spills, flotation-based separation, and purification of specific targets from mixtures!</div>
 +
        </div>
 +
 +
 +
<div class="section">
 +
            <div style="width: 15%; margin: 0 2.4%; float: left;">
 +
              <a href="https://2017.igem.org/Team:IISc-Bangalore/Team"><img src='https://static.igem.org/mediawiki/2017/8/8e/T--IISc-Bangalore--icons-about.svg' width=100% />
 +
              <div style="font-size: 2.5em; font-family: 'Raleway-ExtraBold', sans-serif; margin-top: 20px; text-align: center; color: black;" class='textclass'>ABOUT</div></a>
 +
            </div>
 +
            <div style="width: 15%; margin: 0 2.4%; float: left;">
 +
              <a href="https://2017.igem.org/Team:IISc-Bangalore/Description"><img src='https://static.igem.org/mediawiki/2017/3/3b/T--IISc-Bangalore--icons-project.svg' width=100% />
 +
              <div style="font-size: 2.5em; font-family: 'Raleway-ExtraBold', sans-serif; margin-top: 20px; text-align: center; color: black;" class='textclass'>PROJECT</div></a>
 +
            </div>
 +
            <div style="width: 15%; margin: 0 2.4%; float: left;">
 +
              <a href="https://2017.igem.org/Team:IISc-Bangalore/Assembly"><img src='https://static.igem.org/mediawiki/2017/6/6f/T--IISc-Bangalore--icons-lab.svg' width=100% />
 +
              <div style="font-size: 2.5em; font-family: 'Raleway-ExtraBold', sans-serif; margin-top: 20px; text-align: center; color: black;" class='textclass'>LAB</div></a>
 +
            </div>
 +
            <div style="width: 15%; margin: 0 2.4%; float: left;">
 +
              <a href="https://2017.igem.org/Team:IISc-Bangalore/Hardware"><img src='https://static.igem.org/mediawiki/2017/f/f7/T--IISc-Bangalore--icons-hardware.svg' width=100% />
 +
              <div style="font-size: 2.5em; font-family: 'Raleway-ExtraBold', sans-serif; margin-top: 20px; text-align: center; color: black;" class='textclass'>HARDWARE</div></a>
 +
            </div>
 +
            <div style="width: 15%; margin: 0 2.4%; float: left;">
 +
              <a href="https://2017.igem.org/Team:IISc-Bangalore/HP/Silver"><img src='https://static.igem.org/mediawiki/2017/8/8f/T--IISc-Bangalore--icons-community.svg' width=100% />
 +
              <div style="font-size: 2.5em; font-family: 'Raleway-ExtraBold', sans-serif; margin-top: 20px; text-align: center; color: black;" class='textclass'>COMMUNITY</div></a>
 +
            </div>
 +
        </div>
 +
</div>
 +
<script>
 +
$(document).ready(function() {
 +
  $('#fullpage').fullpage({
 +
    menu: '#menu',
 +
    lockAnchors: false,
 +
    anchors:['first', 'second', 'third', 'fourth', 'fifth', 'sixth'],
 +
    navigation: true,
 +
    navigationPosition: 'right',
 +
    navigationTooltips: ['first', 'second', 'third', 'fourth', 'fifth', 'sixth'],
 +
    showActiveTooltip: false,
 +
    slidesNavigation: false,
 +
    slidesNavPosition: 'bottom',
 +
  });
 +
});
 +
</script>
 +
<script type="text/javascript" src="https://2017.igem.org/Template:IISc-Bangalore/Javascript?action=raw&ctype=text/javascript"></script>
 
</html>
 
</html>

Latest revision as of 03:41, 2 November 2017

Gas vesicles (GVs) are hollow protein nanostructures synthesized by phototrophic haloarchaea and cyanobacteria to regulate their flotation in aquatic habitats.
Bioengineered GVs have been genetically modified for diverse purposes; ultrasonic molecular imaging, gauging cellular turgor pressures, and vaccine delivery - but none of their current applications exploit their most fundamental characteristic: buoyancy.
Our modelling shows that clusters of GVs float enormously better than individual GVs.
iFLOAT aims to improve the flotation of gas vesicles by clustering them using three distinct methods: charge-based flocculation, biotin-streptavidin interaction, and SpyCatcher-SpyTag heterodimerization
Future applications of these clusters can include bioremediation of oil spills, flotation-based separation, and purification of specific targets from mixtures!