(36 intermediate revisions by the same user not shown) | |||
Line 55: | Line 55: | ||
#navdiv h1 img { | #navdiv h1 img { | ||
width:150px; | width:150px; | ||
− | |||
} | } | ||
#navdiv h1 { | #navdiv h1 { | ||
line-height: 150px; | line-height: 150px; | ||
− | + | margin-top:-25px; | |
} | } | ||
Line 69: | Line 68: | ||
margin:0; | margin:0; | ||
padding:0; | padding:0; | ||
− | + | } | |
#navdiv ul a{ | #navdiv ul a{ | ||
text-decoration: none; | text-decoration: none; | ||
color: #FFFFFF; | color: #FFFFFF; | ||
− | |||
} | } | ||
Line 302: | Line 300: | ||
width:50px; | width:50px; | ||
} | } | ||
+ | |||
+ | |||
+ | .lineSeparator{ | ||
+ | height:3px; | ||
+ | background:#89d875; | ||
+ | |||
+ | } | ||
+ | .TableBox{ | ||
+ | width:100%; | ||
+ | text-align:center;} | ||
+ | |||
+ | #EnzymeTable{ | ||
+ | width:50%; | ||
+ | display:inline-block;} | ||
+ | |||
+ | #PCR1,#PCR2{ | ||
+ | width:50%; | ||
+ | display:inline-block; | ||
+ | } | ||
+ | #PCR3{ | ||
+ | width:30%; | ||
+ | display:inline-block; | ||
+ | } | ||
+ | |||
+ | |||
+ | |||
#foot ul{ | #foot ul{ | ||
display: flex; | display: flex; | ||
Line 384: | Line 408: | ||
border-color: #89d875; | border-color: #89d875; | ||
outline: none; | outline: none; | ||
− | |||
opacity:0.8; | opacity:0.8; | ||
background-color: #455057; | background-color: #455057; | ||
Line 394: | Line 417: | ||
#ScrollUp:hover { | #ScrollUp:hover { | ||
− | background-color: # | + | background-color: #89d875; |
} | } | ||
#foot ul li span:hover .fa | #foot ul li span:hover .fa | ||
Line 414: | Line 437: | ||
#sponsors{ | #sponsors{ | ||
+ | padding-top:100px; | ||
text-align:center; | text-align:center; | ||
margin-left:50px; | margin-left:50px; | ||
Line 443: | Line 467: | ||
<ul class="drop-menu menu-1"> | <ul class="drop-menu menu-1"> | ||
<a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a> | <a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a> | ||
− | <a href="https://2017.igem.org/Team:Kent/ | + | <a href="https://2017.igem.org/Team:Kent/Model"><li>Modelling</li></a> |
<a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a> | <a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a> | ||
− | + | ||
− | + | ||
</ul> | </ul> | ||
<li> | <li> | ||
<a href="#">Parts</a> | <a href="#">Parts</a> | ||
<ul class="drop-menu menu-2"> | <ul class="drop-menu menu-2"> | ||
− | + | ||
<a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a> | <a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a> | ||
− | + | ||
− | + | ||
</ul> | </ul> | ||
Line 476: | Line 499: | ||
<ul class="drop-menu menu-2"> | <ul class="drop-menu menu-2"> | ||
<a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a> | <a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a> | ||
− | + | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 695: | Line 718: | ||
<label for="acc-close" class="hull-title">Interlab Protocols</label> | <label for="acc-close" class="hull-title">Interlab Protocols</label> | ||
</header> | </header> | ||
− | <input type="radio" name="droptext" id=" | + | <input type="radio" name="droptext" id="cb10" /> |
<section class="hull"> | <section class="hull"> | ||
− | <label class="hull-title" for=" | + | <label class="hull-title" for="cb10">Calibration of OD 600 Reference Point</label> |
<label class="hull-close" for="acc-close"></label> | <label class="hull-close" for="acc-close"></label> | ||
<div class="hull-content"> | <div class="hull-content"> | ||
Line 735: | Line 758: | ||
</section> | </section> | ||
− | <input type="radio" name="droptext" id=" | + | <input type="radio" name="droptext" id="cb11" /> |
<section class="hull"> | <section class="hull"> | ||
− | <label class="hull-title" for=" | + | <label class="hull-title" for="cb11">Production of Fluorescein stock solution</label> |
<label class="hull-close" for="acc-close"></label> | <label class="hull-close" for="acc-close"></label> | ||
− | <div class="hull-content"> | + | <div class="hull-content"> |
− | + | <ul> | |
− | to | + | <li> Spin down the Fluorescein stock tube and ensure the pellet is at the tubes' bottom </li> |
+ | <li>Prepare 2x fluorescein stock solution (100 µM)<ul> | ||
+ | <li>Resuspend Fluorescein in 1mL 1xPBS</li> | ||
+ | <li>Ensure Fluorescein is properly dissolved<br> | ||
+ | After the resuspension, pipette up and down and examine the solution in | ||
+ | the tip (if particulates are visisble, continue to mix solution until they | ||
+ | disappear)</li></ul></li> | ||
<br> | <br> | ||
− | + | <li>Dilute the 2x Fluorescein stock solution<ul> | |
− | + | <li> With 1xPBS to make 1x fluorescein solution</li> | |
+ | <li>With resulting concentration of fluorescein stock solution 50 µM | ||
+ | (500 µL of 2x fluorescein in 500 µL 1x PBS to make 1 mL of 50 µM (1x) | ||
+ | fluorescein solution)</li></ul></li> | ||
+ | </ul> | ||
+ | </div> | ||
</section> | </section> | ||
<input type="radio" name="droptext" id="acc-close" /> | <input type="radio" name="droptext" id="acc-close" /> | ||
− | <input type="radio" name="droptext" id=" | + | <input type="radio" name="droptext" id="cb12" /> |
<section class="hull"> | <section class="hull"> | ||
− | <label class="hull-title" for=" | + | <label class="hull-title" for="cb12">Fluorescein Fluorescence Standard Curve</label> |
<label class="hull-close" for="acc-close"></label> | <label class="hull-close" for="acc-close"></label> | ||
− | <div class="hull-content"> | + | <div class="hull-content"> |
− | + | A dilution series of Fluorescein in 4 replicates must be prepared where the | |
+ | fluorescence is measured in a 96 well plate in standard mode on a plate reader. A | ||
+ | standard curve will be generated of fluorescence of fluorescein concentration. This | ||
+ | will be used to correct cell based readings to an equivalent fluorescein | ||
+ | concentration, which will then be converted into a GFP concentration. | ||
<br> | <br> | ||
− | <ul><li> | + | <br> |
− | + | Materials | |
− | + | <br> | |
− | <li>The | + | <ul><li>Fluorescein</li> |
− | <li> | + | <li>10mL 1xPBS (Phosphate Buffered Saline)</li> |
− | </li></ul></div> | + | <li>96 well plate (black with flat, transparent/clear bottom)</li></ul> |
+ | <br> | ||
+ | Method | ||
+ | <br>Serial dilutions need to be performed across columns 1-11 | ||
+ | Column 12 must contain PBS buffer only | ||
+ | <br> | ||
+ | The plate will initially be setup fluorescein stock in column 1 and equal volume of1xPBS in columns 2-12 | ||
+ | <ul><li> Add 100 µL of PBS into wells A2-A12, B2-B12, C2-C12 and D2-D12</li> | ||
+ | <li>Add 200 µL of Fluorescein 1x stock solution into A1, B1, C1 and D1</li> | ||
+ | |||
+ | <li>Transfer 100 µL of Fluorescein stock solution from A1 into A2</li> | ||
+ | <li>Mix A2 by pipetting up and down 3x and transfer 100 µL into A3 | ||
+ | Repeat the process for A3 into A4, A4 into A5, etc. until A11</li> | ||
+ | <li>Mix A11 by pipetting up and down 3x and transfer 100 µL into liquid waste</li> | ||
+ | <li>Repeat dilution series for rows B, C and D</li> | ||
+ | <li>Measure fluorescence of all samples in all standard measurement modes in | ||
+ | instrument</li> | ||
+ | <li>Record the data</li></ul> | ||
+ | <br> | ||
+ | Measurement notes | ||
+ | <ul><li>The plates can now be measured in the plate reader</li> | ||
+ | <li>Standard GFP settings must be used (same as those used when measuring the | ||
+ | cells):<ul> | ||
+ | <li>Excitation 485nm | ||
+ | <li>Emission 530/30 | ||
+ | <li>Turn off path length correction</li></ul></li> | ||
+ | <li>Would be ideal to repeat measurements with different settings | ||
+ | <ul><li>Generates series of standard curves to choose from</li></ul></li> | ||
+ | <li>Use number of settings that affect sensitivity (gain and/or slit width) | ||
+ | <ul><li>Also consider orbital averaging, top/bottom optics</li></ul></li> | ||
+ | |||
+ | </div> | ||
</section> | </section> | ||
<input type="radio" name="droptext" id="acc-close" /> | <input type="radio" name="droptext" id="acc-close" /> | ||
− | <input type="radio" name="droptext" id=" | + | <input type="radio" name="droptext" id="cb13" /> |
<section class="hull"> | <section class="hull"> | ||
− | <label class="hull-title" for=" | + | <label class="hull-title" for="cb13">Cell Measurement Protocol</label> |
<label class="hull-close" for="acc-close"></label> | <label class="hull-close" for="acc-close"></label> | ||
− | <div class="hull-content"> | + | <div class="hull-content"> |
+ | The calibration measurements should be performed before the measurements on the cells are performed. This allows that the measurement process is understood | ||
+ | and that the cell measurements are taken under the same conditions. | ||
<br> | <br> | ||
− | <ul><li> | + | Materials |
− | + | <ul> | |
− | + | <li>Competent cells (E.coli strain DH5-alpha)</li> | |
− | + | <li>LB (Luria Bertani) media</li> | |
− | <li> | + | <li>Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH – |
− | <li> | + | working stock 25 ug/mL)</li> |
− | + | <li>50 mL Falcon tube (covered in foil to block light)</li> | |
− | <li> | + | <li>Incubator at 37oC</li> |
− | + | <li>1.5mL Eppendorf tubes for sample storage</li> | |
− | <li> | + | <li>Ice bucket</li> |
− | + | <li>Pipettes</li> | |
− | <li> | + | <li>96 well plate (black with flat, transparent/clear bottom)</li>************?????? |
− | + | </ul> | |
− | + | ||
− | <li> | + | </div> |
− | <li> | + | </section> |
− | + | <input type="radio" name="droptext" id="acc-close" /> | |
− | <li> | + | <input type="radio" name="droptext" id="cb14" /> |
− | + | <section class="hull"> | |
− | + | <label class="hull-title" for="cb14">Calcium Chloride Competent Cells</label> | |
+ | <label class="hull-close" for="acc-close"></label> | ||
+ | <div class="hull-content"> | ||
+ | Prior Preparation | ||
+ | <ul><li>Autoclave 50mM Calcium Chloride and keep it cold at about 4 o C</li> | ||
+ | <li>For the starter cultures<ul><li> | ||
+ | <li>Add a colony of E.coli DH5cells to 5mL of LB</li> | ||
+ | <li>Incubate at 37 o C overnight</li></ul></li> | ||
+ | <br> | ||
+ | Method:<ul> | ||
+ | <li> Keep cells on ice at all times where possible</li> | ||
+ | <li> To 100mLs of LB, add 100uL of cells from the overnight culture</li> | ||
+ | <li> Let it grow at 37 o C and 250 rpm (until it reaches OD 600 ~0.6-0.8)</li> | ||
+ | <li> Place cells on ice immediately to cool them once the correct OD 600 has been | ||
+ | reached</li> | ||
+ | <li>Centrifuge at max speed for 10 mins and 4 o C</li> | ||
+ | <li>Discard supernatant</li> | ||
+ | <li>Resuspend the pellet in 50% of the original volume with ice-cold 50mM CaCl 2; In a 5omL culture, add 25mL CaCl 2</li> | ||
+ | <li>Allow them to sit on ice for 30 mins</li> | ||
+ | <li>Centrifuge at max speed for 10 mins at 4 o C</li> | ||
+ | <li>Discard the supernatant</li> | ||
+ | </ul> | ||
+ | <br> | ||
+ | <div class="lineSeparator"></div> | ||
+ | <br> | ||
+ | Preparation of Competent Cells for Storage | ||
+ | <br> | ||
+ | <br> | ||
+ | Materials | ||
+ | <ul> | ||
+ | <li>Cell Line</li> | ||
+ | <li>Sterile LB</li> | ||
+ | <li>10mM sterile and chilled Calcium Chloride</li> | ||
+ | <li>Dry ice</li> | ||
+ | <li>Acetone</li></ul> | ||
+ | <br> | ||
+ | Method | ||
+ | <ul> | ||
+ | <li>Inoculate the cells (either 1:50 or 1:100) into 50mL of LB</li> | ||
+ | <li>Grow them at 37 o C until OD600 is around 0.4-0.5</li> | ||
+ | <li>Place on ice for 10 minutes while Falcon tubes are pre-chilled</li> | ||
+ | <li>The cells should be harvested at 3000 rpm, 4C for 8 minutes</li> | ||
+ | <li>The pellet then needs to be resuspended in 1mL of 100mM CaCl 2 and 30% | ||
+ | (v/v) glycerol</li> | ||
+ | <li>The resulting solution needs to be aliquoted into chilled Eppendorf tubes | ||
+ | (100uL per tube)</li> | ||
+ | <li>Place each Eppendorf tube into an acetone dry ice bath to snap freeze them</li> | ||
+ | <li>Then store at -80 o C</li></ul> | ||
+ | |||
+ | </div> | ||
</section> | </section> | ||
<input type="radio" name="droptext" id="acc-close" /> | <input type="radio" name="droptext" id="acc-close" /> | ||
</nav> | </nav> | ||
+ | <div class="connector"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/thumb/b/bf/T--Kent--ExperimentsConnect.png/133px-T--Kent--ExperimentsConnect.png"> | ||
+ | </div> | ||
+ | <nav class="droptext arrows"> | ||
+ | <header class="hull"> | ||
+ | <label for="acc-close" class="hull-title">Complex Protocols</label> | ||
+ | </header> | ||
+ | <input type="radio" name="droptext" id="cb15" /> | ||
+ | <section class="hull"> | ||
+ | <label class="hull-title" for="cb15">DNA Miniprep Kit (Qiagen)</label> | ||
+ | <label class="hull-close" for="acc-close"></label> | ||
+ | <div class="hull-content"> | ||
+ | Method: (passive + our) | ||
+ | <ul><li>2 x 5 mL of our ampicillin resistant bacteria, containing the plasmid of interest and grown | ||
+ | overnight on LB medium, are centrifuged in falcon tubes at 4500 rpm for 6 minutes.</li> | ||
+ | <li>The supernatant is removed and the pelleted bacteria are resuspended in 250μL of P1 buffer | ||
+ | (containing 100 μg/mL RNase A). Thoroughly mix/ Vortex mix of the samples is required to | ||
+ | ensure full resuspension. The samples are transferred into Eppendorf tubes.</li> | ||
+ | <li>250 μL of P2 buffer is added to each sample and gently mixed by inverting the tube ca. 10 times. | ||
+ | This lysis reaction should not exceed 5 minutes.</li> | ||
+ | <li>350 μL of N3 buffer is pipetted to each sample, and gently but thoroughly mixed by inverting the | ||
+ | tube ca. 10 times. The samples are then centrifuged in a table top centrifuge at 13.000 rpm for | ||
+ | 10 minutes.</li> | ||
+ | <li>The supernatant contains our plasmid of interest, while the white pellet is cell debris. 800 μl of | ||
+ | the supernatant are pipetted into Qiagen Spin Columns.</li> | ||
+ | <li>The columns are centrifuged for 60 seconds. The plasmids are retained in a silica mesh, while | ||
+ | remaining substances flow through the column into a collection tube.</li> | ||
+ | <li>The column is washed with 500 μL of PB buffer and centrifuged (13.000 rpm for 60 sec) to | ||
+ | remove any remaining nucleases which could interfere with further processing of the plasmids.</li> | ||
+ | <li>750 μL of PE buffer is added to each sample and centrifuged for 60 seconds to remove any | ||
+ | remaining wash buffer. The flow through is discarded and the spin column is placed into a fresh | ||
+ | Eppendorf tube.</li> | ||
+ | <li>To elute the bound plasmid DNA, 50 μL of EB buffer is added to the column. After letting the | ||
+ | samples stand for ca. 2 minutes, each tube is centrifuged at high speed (13.000 rpm) for 60 | ||
+ | seconds.</li> | ||
+ | <li>The spin column is discarded, the Eppendorf tubes now contain our desired plasmid DNA.</li></ul> | ||
+ | </div> | ||
+ | </section> | ||
+ | <input type="radio" name="droptext" id="acc-close" /> | ||
+ | <input type="radio" name="droptext" id="cb16" /> | ||
+ | <section class="hull"> | ||
+ | <label class="hull-title" for="cb16">Enzyme Digest Protocol</label> | ||
+ | <label class="hull-close" for="acc-close"></label> | ||
+ | <div class="hull-content"> | ||
+ | A restriction enzyme digestion is usually performed in a volume of 20μL with 0.2-1.5μg of substrate DNA and two-to tenfold excess of enzyme. | ||
+ | <br> | ||
+ | If a large volume of DNA or enzyme is used, abnormal results may occur | ||
+ | <br> | ||
+ | When pipetting the samples in the different lanes of the gel, the enzyme componentof the tube needs to make up 1μL. | ||
+ | <br> | ||
+ | Method: | ||
+ | 1. The 5 lanes of the gel are as follows<ul> | ||
+ | <li>Marker</li> | ||
+ | <li>Control (with no cutting enzyme)</li> | ||
+ | <li>1μL EcoR1</li> | ||
+ | <li>1μL Pst1</li> | ||
+ | <li>1μL EcoR1 and Pst1</li> | ||
+ | 2. Assemble the following components in a sterile tube: | ||
+ | <br><br> | ||
+ | <div class="TableBox"> | ||
+ | <img src="https://static.igem.org/mediawiki/2017/thumb/8/8d/T--Kent--EnzymeDigest.png/800px-T--Kent--EnzymeDigest.png" id="EnzymeTable"> | ||
+ | <br><br> | ||
+ | </div> | ||
+ | Note: Different lanes require different tubes to be made up | ||
+ | 3. Mix the solution gently by pipetting up and down | ||
+ | 4. Close the tube and centrifuge for a few seconds in a microcentrifuge | ||
+ | 5. Incubate at the specific enzyme’s optimum temperature (37 o C in this case)for 1-4 hours | ||
+ | 6. Add loading buffer to a 1 X final concentration and proceed to the gel analysis | ||
+ | </div> | ||
+ | </section> | ||
+ | <input type="radio" name="droptext" id="acc-close" /> | ||
+ | <input type="radio" name="droptext" id="cb17" /> | ||
+ | <section class="hull"> | ||
+ | <label class="hull-title" for="cb17">PCR Protocol for Q5 High-Fidelity 2X Master Mix</label> | ||
+ | <label class="hull-close" for="acc-close"></label> | ||
+ | <div class="hull-content">All reaction components should be assembled on ice then quickly transferred to a thermocycler that’s been preheated to the denaturation temperature (98oC) | ||
+ | <br> | ||
+ | Components: | ||
+ | All the components should be mixed prior to use | ||
+ | <br><br> | ||
+ | <div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/c/cd/T--Kent--PCR1.png" id="PCR1"></div> | ||
+ | <br><br> | ||
+ | Method: | ||
+ | <ul> | ||
+ | <li>Gently mix the reaction</li> | ||
+ | <li>Collect all the liquid found at the bottom of the tube by a quick spin if needed</li> | ||
+ | <li>Overlay the sample with mineral oil when using a PCR machine that doesn’t have a heated lid</li> | ||
+ | <li>Transfer the PCR tubes to the PCR machine to begin thermocycling</li></ul> | ||
+ | <br> | ||
+ | Thermocycling conditions: | ||
+ | <br><br> | ||
+ | <div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/9/91/T--Kent--PCR2.png" id="PCR2"></div> | ||
+ | <br><br> | ||
+ | Annealing temperatures shouldn’t exceed 72 o C. You can use the NEB T m Calculator | ||
+ | found on the New England BioLabs website to calculate temperatures needed and | ||
+ | timings. | ||
+ | <br> | ||
+ | <br> | ||
+ | <div class="lineSeparator"></div> | ||
+ | <br> | ||
+ | Guidelines | ||
+ | Template | ||
+ | <ul><li>A high quality, purified DNA template is preferred as it greatly improves PCR success. Recommended amounts of such a template are shown below for a 50uL reaction:</ul></li> | ||
+ | <div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/thumb/f/f3/T--Kent--PCR3.png/800px-T--Kent--PCR3.png" id="PCR3"></div> | ||
+ | |||
+ | <br> | ||
+ | <br> | ||
+ | Primers | ||
+ | <ul><li>Oligonucleotide primers should generally be 20-40 nucleotides long while having a GC content of 40-60%</li> | ||
+ | <li>Best results are seen when using each primer at a final concentration of 0.5uM in the reaction</li></ul> | ||
+ | |||
+ | <br> | ||
+ | Mg2+ and additives | ||
+ | <ul><li>The Q5 High-Fidelity Master Mix contains 2mM Mg++ when used at a 1X concentration, which is optimal for most PCR products</li></ul> | ||
+ | |||
+ | <br> | ||
+ | Deoxynucleotides | ||
+ | <ul><li>Final concentration of dNTPs is 200uM of each deoxynucleotide in the 1X final concentration</li> | ||
+ | <li>Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and isn’t recommended for use with uracil-containing primers or templates</li></ul> | ||
+ | |||
+ | <br> | ||
+ | Q5 High-Fidelity DNA Polymerase concentration | ||
+ | <ul><li>Concentration in the Master Mix has been optimized for best results under a wide conditions range</li></ul> | ||
+ | |||
+ | <br> | ||
+ | Denaturation | ||
+ | <ul><li>Initial denaturation of 30 seconds occurs at 98oC, which is enough for most amplicons from pure DNA templates.</li> | ||
+ | <li>Though longer denaturation times going up to 3 minutes can be used for templates that require it</li></ul> | ||
+ | |||
+ | <Br> | ||
+ | Annealing | ||
+ | <ul><li>Optimal annealing temperatures for this Master Mix tend to be higher than for other PCR polymerases</li> | ||
+ | <li>Typically 10-30 second annealing steps should be used at 3oC above the Tm of the lower Tm primer</li> | ||
+ | <li>Temperature gradients can also be used to optimize the annealing temperature for each primer pair<ul> | ||
+ | <li>For higher Tm primer pairs, two-step cycling without a separate annealing step can be used</li></ul></li></ul> | ||
+ | |||
+ | <br> | ||
+ | Extension | ||
+ | <ul><li>Recommended extension temperature is 72oC | ||
+ | <ul><li>With the recommended time being between 20-30 seconds per kb for complex, genomic samples.<li></ul><li> | ||
+ | <li>The time can be reduced to 10 seconds per kb for simpler templates (plasmid, E.coli, etc.) or complex templates smaller than 1kb</li> | ||
+ | <li>The extension time can be increased to 40 seconds per kb for cDNA or other long, complex templates if needed</li> | ||
+ | <li>A final extension of 2 minutes at 72oC is recommended</li></ul> | ||
+ | |||
+ | |||
+ | Cycle Number | ||
+ | <ul><li>25-35 cycles yield sufficient products generally</li> | ||
+ | <li>For genomic amplicons, 30-35 cycles are advised</li></ul> | ||
+ | |||
+ | <br> | ||
+ | 2-step PCR | ||
+ | <ul><li>Used when primers have annealing temperatures exceeding or are equal to 72oC (≥ 72°C).</li> | ||
+ | <li>This 2-step thermocycling protocol combines annealing and extension into one step</li></ul> | ||
+ | |||
+ | <br> | ||
+ | Amplification of long products | ||
+ | <ul><li>When amplifying products > 6kb, you can increase the extension time to 40-50 seconds per kb.</li></ul> | ||
+ | |||
+ | <br> | ||
+ | PCR Product | ||
+ | <ul><li>Products generated using this Master Mix have blunt ends</li> | ||
+ | <li>If clonding is the next step then blunt-end cloning isn’t recommended</li> | ||
+ | <li>If T/A-cloning is to be done, the DNA should be purified prior to A-addition, since the Q5 High-Fidelity DNA Polymerase will degrade any overhangs generated</li></ul> | ||
+ | |||
+ | </div> | ||
+ | </section> | ||
+ | <input type="radio" name="droptext" id="acc-close" /> | ||
+ | |||
+ | </nav> | ||
<div id="foot"> | <div id="foot"> | ||
<ul> | <ul> | ||
Line 838: | Line 1,127: | ||
} | } | ||
− | |||
function topFunction() { | function topFunction() { | ||
document.body.scrollTop = 0; | document.body.scrollTop = 0; |
Latest revision as of 03:52, 2 November 2017
Experiments & Protocols