Difference between revisions of "Team:Kent/Experiments"

 
(36 intermediate revisions by the same user not shown)
Line 55: Line 55:
 
         #navdiv h1 img {
 
         #navdiv h1 img {
 
         width:150px;
 
         width:150px;
margin-top:-50px;
 
 
         }
 
         }
  
 
#navdiv h1 {
 
#navdiv h1 {
 
line-height: 150px;
 
line-height: 150px;
 
+
margin-top:-25px;
 
}
 
}
  
Line 69: Line 68:
 
margin:0;
 
margin:0;
 
padding:0;
 
padding:0;
                }
+
}
  
 
         #navdiv ul a{
 
         #navdiv ul a{
 
         text-decoration: none;
 
         text-decoration: none;
 
         color: #FFFFFF;
 
         color: #FFFFFF;
float:center;
 
 
         }
 
         }
  
Line 302: Line 300:
 
width:50px;
 
width:50px;
 
}
 
}
 +
 +
 +
.lineSeparator{
 +
height:3px;
 +
background:#89d875;
 +
 +
}
 +
.TableBox{
 +
width:100%;
 +
text-align:center;}
 +
 +
#EnzymeTable{
 +
width:50%;
 +
display:inline-block;}
 +
 +
#PCR1,#PCR2{
 +
width:50%;
 +
display:inline-block;
 +
}
 +
#PCR3{
 +
width:30%;
 +
display:inline-block;
 +
}
 +
 +
 +
 
         #foot ul{
 
         #foot ul{
 
         display: flex;
 
         display: flex;
Line 384: Line 408:
 
     border-color: #89d875;
 
     border-color: #89d875;
 
   outline: none;
 
   outline: none;
 
 
opacity:0.8;
 
opacity:0.8;
 
   background-color: #455057;
 
   background-color: #455057;
Line 394: Line 417:
  
 
#ScrollUp:hover {
 
#ScrollUp:hover {
   background-color: #28AAA1;
+
   background-color: #89d875;
 
}
 
}
 
         #foot ul li span:hover .fa
 
         #foot ul li span:hover .fa
Line 414: Line 437:
  
 
#sponsors{
 
#sponsors{
 +
padding-top:100px;
 
text-align:center;
 
text-align:center;
 
margin-left:50px;
 
margin-left:50px;
Line 443: Line 467:
 
                     <ul class="drop-menu menu-1">
 
                     <ul class="drop-menu menu-1">
 
                         <a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Description"><li>Description</li></a>
<a href="https://2017.igem.org/Team:Kent/Design"><li> Design </li></a>
+
<a href="https://2017.igem.org/Team:Kent/Model"><li>Modelling</li></a>
 
                       <a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a>
 
                       <a href="https://2017.igem.org/Team:Kent/Results"><li>Results</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Model"><li>Modelling</li></a>
+
                          
<a href="https://2017.igem.org/Team:Kent/Demonstrate"><li>Demonstrate</li></a>
+
 
 
                     </ul>
 
                     </ul>
 
                 <li>
 
                 <li>
 
                     <a href="#">Parts</a>
 
                     <a href="#">Parts</a>
 
                     <ul class="drop-menu menu-2">
 
                     <ul class="drop-menu menu-2">
<a href="https://2017.igem.org/Team:Kent/Parts"> <li> Parts </li></a>
+
 
 
                         <a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Basic_Part"><li>Basic Parts</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Composite_Part"><li>Composite Parts</li></a>
+
                          
<a href = "https://2017.igem.org/Team:Kent/Part_Collection"><li> Part Collection </li></a>
+
  
 
                     </ul>
 
                     </ul>
Line 476: Line 499:
 
                     <ul class="drop-menu menu-2">
 
                     <ul class="drop-menu menu-2">
 
                         <a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a>
 
                         <a href="https://2017.igem.org/Team:Kent/Safety"><li>Project Safety</li></a>
                         <a href="https://2017.igem.org/Team:Kent/Signs"><li>Hazard Signs</li></a>
+
                          
 
                     </ul>
 
                     </ul>
 
                 </li>
 
                 </li>
Line 695: Line 718:
 
<label for="acc-close" class="hull-title">Interlab Protocols</label>
 
<label for="acc-close" class="hull-title">Interlab Protocols</label>
 
</header>
 
</header>
<input type="radio" name="droptext" id="cb9" />
+
<input type="radio" name="droptext" id="cb10" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb9">Calibration of OD 600 Reference Point</label>
+
<label class="hull-title" for="cb10">Calibration of OD 600 Reference Point</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
 
<div class="hull-content">
 
<div class="hull-content">
Line 735: Line 758:
 
</section>
 
</section>
 
 
<input type="radio" name="droptext" id="cb10" />
+
<input type="radio" name="droptext" id="cb11" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb10">Production of SOC medium and glucose stock</label>
+
<label class="hull-title" for="cb11">Production of Fluorescein stock solution</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
<div class="hull-content">Once again bring 20g of tryptone, 5g of yeast of extract, 0.584g of NaCl, 0.186g of KCL, and then
+
<div class="hull-content">
bring 970 ml with millipure water and use the magnetic mixer once again, this was also then put in
+
<ul>
to autoclave.
+
<li> Spin down the Fluorescein stock tube and ensure the pellet is at the tubes' bottom </li>
 +
<li>Prepare 2x fluorescein stock solution (100 µM)<ul>
 +
<li>Resuspend Fluorescein in 1mL 1xPBS</li>
 +
<li>Ensure Fluorescein is properly dissolved<br>
 +
After the resuspension, pipette up and down and examine the solution in
 +
the tip (if particulates are visisble, continue to mix solution until they
 +
disappear)</li></ul></li>
 
<br>
 
<br>
10ml of 2M Mg 2+ stock and then bring it to 100ml with milllipure water, filter sterilize it with 0.2m
+
<li>Dilute the 2x Fluorescein stock solution<ul>
and then final add 20ml of 1M glucose stock.</div>
+
<li> With 1xPBS to make 1x fluorescein solution</li>
 +
<li>With resulting concentration of fluorescein stock solution 50 µM
 +
(500 µL of 2x fluorescein in 500 µL 1x PBS to make 1 mL of 50 µM (1x)
 +
fluorescein solution)</li></ul></li>
 +
</ul>
 +
</div>
 
</section>
 
</section>
 
<input type="radio" name="droptext" id="acc-close" />
 
<input type="radio" name="droptext" id="acc-close" />
<input type="radio" name="droptext" id="cb11" />
+
<input type="radio" name="droptext" id="cb12" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb11">Production of Glycerol stock</label>
+
<label class="hull-title" for="cb12">Fluorescein Fluorescence Standard Curve</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
<div class="hull-content">If you wish to store bacteria long term, you will need to create a Glycerol Stock after
+
<div class="hull-content">
inoculating an overnight liquid culture
+
A dilution series of Fluorescein in 4 replicates must be prepared where the
 +
fluorescence is measured in a 96 well plate in standard mode on a plate reader. A
 +
standard curve will be generated of fluorescence of fluorescein concentration. This
 +
will be used to correct cell based readings to an equivalent fluorescein
 +
concentration, which will then be converted into a GFP concentration.
 
<br>
 
<br>
<ul><li>Once bacterial growth has been achieved, 500μL of the overnight liquid
+
<br>
culture needs to be added to 500μL of 50% glycerol in a 2mL tube where it
+
Materials
should be gently mixed</li>
+
<br>
<li>The glycerol stock should then be frozen at -80 o C<ul>
+
<ul><li>Fluorescein</li>
<li> Successive freeze and thaw cycles will reduce the stocks shelf life</li></ul>
+
<li>10mL 1xPBS (Phosphate Buffered Saline)</li>
</li></ul></div>
+
<li>96 well plate (black with flat, transparent/clear bottom)</li></ul>
 +
<br>
 +
Method
 +
<br>Serial dilutions need to be performed across columns 1-11
 +
Column 12 must contain PBS buffer only
 +
<br>
 +
The plate will initially be setup fluorescein stock in column 1 and equal volume of1xPBS in columns 2-12
 +
<ul><li> Add 100 µL of PBS into wells A2-A12, B2-B12, C2-C12 and D2-D12</li>
 +
<li>Add 200 µL of Fluorescein 1x stock solution into A1, B1, C1 and D1</li>
 +
 
 +
<li>Transfer 100 µL of Fluorescein stock solution from A1 into A2</li>
 +
<li>Mix A2 by pipetting up and down 3x and transfer 100 µL into A3
 +
Repeat the process for A3 into A4, A4 into A5, etc. until A11</li>
 +
<li>Mix A11 by pipetting up and down 3x and transfer 100 µL into liquid waste</li>
 +
<li>Repeat dilution series for rows B, C and D</li>
 +
<li>Measure fluorescence of all samples in all standard measurement modes in
 +
instrument</li>
 +
<li>Record the data</li></ul>
 +
<br>
 +
Measurement notes
 +
<ul><li>The plates can now be measured in the plate reader</li>
 +
<li>Standard GFP settings must be used (same as those used when measuring the
 +
cells):<ul>
 +
<li>Excitation 485nm
 +
<li>Emission 530/30
 +
<li>Turn off path length correction</li></ul></li>
 +
<li>Would be ideal to repeat measurements with different settings
 +
<ul><li>Generates series of standard curves to choose from</li></ul></li>
 +
<li>Use number of settings that affect sensitivity (gain and/or slit width)
 +
<ul><li>Also consider orbital averaging, top/bottom optics</li></ul></li>
 +
 
 +
</div>
 
</section>
 
</section>
 
<input type="radio" name="droptext" id="acc-close" />
 
<input type="radio" name="droptext" id="acc-close" />
<input type="radio" name="droptext" id="cb12" />
+
<input type="radio" name="droptext" id="cb13" />
 
<section class="hull">
 
<section class="hull">
<label class="hull-title" for="cb12">Running Agarose Gel</label>
+
<label class="hull-title" for="cb13">Cell Measurement Protocol</label>
 
<label class="hull-close" for="acc-close"></label>
 
<label class="hull-close" for="acc-close"></label>
<div class="hull-content">After the cells have been miniprepped and the plasmid put through a restriction digest, the agarose gel can be run.
+
<div class="hull-content">
 +
The calibration measurements should be performed before the measurements on the cells are performed. This allows that the measurement process is understood
 +
and that the cell measurements are taken under the same conditions.
 
<br>
 
<br>
<ul><li>Make up some agarose. This is done by taking 0.5g of agarose powder and putting it in a
+
Materials
250ml sterile conical flask, with 50ml of TAE buffer, then microwaving it in small pulses (20
+
<ul>
seconds then swirling it around) until it is dissolved. Don’t overheat it or it will evaporate too
+
<li>Competent cells (E.coli strain DH5-alpha)</li>
much. Make up the evaporated volume to 50ml with distilled water.</li>
+
<li>LB (Luria Bertani) media</li>
<li>Add 1 vial of cybersafe (ask technical services for a tube of it and add all of it)</li>
+
<li>Chloramphenicol (stock concentration 25 mg/mL dissolved in EtOH –
<li>Line the white sides of the tank with the agarose solution, to seal it and prevent leakage. Use
+
working stock 25 ug/mL)</li>
a p1000 pipette set to 1ml. Let it dry (about 5 mins max)</li>
+
<li>50 mL Falcon tube (covered in foil to block light)</li>
<li>Then pour all the agarose/sybrsafe solution into the tank and put in the comb. Let it set and
+
<li>Incubator at 37oC</li>
solidify (maximum 30 mins)</li>
+
<li>1.5mL Eppendorf tubes for sample storage</li>
<li>When the gel has set, remove the comb from the tank (gently!) and then cover the whole
+
<li>Ice bucket</li>
tank with TAE buffer, so there’s at least half a centimetre of TAE covering the gel.</li>
+
<li>Pipettes</li>
<li>Now, the samples need to be loaded. Load some DNA markers (ask technical services for a
+
<li>96 well plate (black with flat, transparent/clear bottom)</li>************??????
tube of this and load the whole tube) into well 1( left hand side) and then choose what you
+
</ul>
load into wells 2, 3, and 4 etc. (make sure you note what’s in each lane!)</li>
+
 
<li>Load all of your digests into the wells 2,3, and 4.</li>
+
</div>
<li>Plug into a power supply and put the cover on. Run for 40 mins to an hour at 80v. The amps
+
</section>
don’t matter.</li>
+
<input type="radio" name="droptext" id="acc-close" />
<li>Once the visible markers have reached the half way point of the tank, turn off the power
+
<input type="radio" name="droptext" id="cb14" />
supply and drain the TAE buffer form the tank. Remove the gel with a spatula and place in a
+
<section class="hull">
UV imaging box. Take an image of the gel under UV light, save it onto a USB stick.</li></ul></div>
+
<label class="hull-title" for="cb14">Calcium Chloride Competent Cells</label>
 +
<label class="hull-close" for="acc-close"></label>
 +
<div class="hull-content">
 +
Prior Preparation
 +
<ul><li>Autoclave 50mM Calcium Chloride and keep it cold at about 4 o C</li>
 +
<li>For the starter cultures<ul><li>
 +
<li>Add a colony of E.coli DH5cells to 5mL of LB</li>
 +
<li>Incubate at 37 o C overnight</li></ul></li>
 +
<br>
 +
Method:<ul>
 +
<li> Keep cells on ice at all times where possible</li>
 +
<li> To 100mLs of LB, add 100uL of cells from the overnight culture</li>
 +
<li> Let it grow at 37 o C and 250 rpm (until it reaches OD 600 ~0.6-0.8)</li>
 +
<li> Place cells on ice immediately to cool them once the correct OD 600 has been
 +
reached</li>
 +
<li>Centrifuge at max speed for 10 mins and 4 o C</li>
 +
<li>Discard supernatant</li>
 +
<li>Resuspend the pellet in 50% of the original volume with ice-cold 50mM CaCl 2; In a 5omL culture, add 25mL CaCl 2</li>
 +
<li>Allow them to sit on ice for 30 mins</li>
 +
<li>Centrifuge at max speed for 10 mins at 4 o C</li>
 +
<li>Discard the supernatant</li>
 +
</ul>
 +
<br>
 +
<div class="lineSeparator"></div>
 +
<br>
 +
Preparation of Competent Cells for Storage
 +
<br>
 +
<br>
 +
Materials
 +
<ul>
 +
<li>Cell Line</li>
 +
<li>Sterile LB</li>
 +
<li>10mM sterile and chilled Calcium Chloride</li>
 +
<li>Dry ice</li>
 +
<li>Acetone</li></ul>
 +
<br>
 +
Method
 +
<ul>
 +
<li>Inoculate the cells (either 1:50 or 1:100) into 50mL of LB</li>
 +
<li>Grow them at 37 o C until OD600 is around 0.4-0.5</li>
 +
<li>Place on ice for 10 minutes while Falcon tubes are pre-chilled</li>
 +
<li>The cells should be harvested at 3000 rpm, 4C for 8 minutes</li>
 +
<li>The pellet then needs to be resuspended in 1mL of 100mM CaCl 2 and 30%
 +
(v/v) glycerol</li>
 +
<li>The resulting solution needs to be aliquoted into chilled Eppendorf tubes
 +
(100uL per tube)</li>
 +
<li>Place each Eppendorf tube into an acetone dry ice bath to snap freeze them</li>
 +
<li>Then store at -80 o C</li></ul>
 +
 
 +
</div>
 
</section>
 
</section>
 
<input type="radio" name="droptext" id="acc-close" />
 
<input type="radio" name="droptext" id="acc-close" />
  
 
</nav>
 
</nav>
 +
<div class="connector">
 +
<img src="https://static.igem.org/mediawiki/2017/thumb/b/bf/T--Kent--ExperimentsConnect.png/133px-T--Kent--ExperimentsConnect.png">
 +
</div>
 +
<nav class="droptext arrows">
 +
<header class="hull">
 +
<label for="acc-close" class="hull-title">Complex Protocols</label>
 +
</header>
 +
<input type="radio" name="droptext" id="cb15" />
 +
<section class="hull">
 +
<label class="hull-title" for="cb15">DNA Miniprep Kit (Qiagen)</label>
 +
<label class="hull-close" for="acc-close"></label>
 +
<div class="hull-content">
 +
Method: (passive + our)
 +
<ul><li>2 x 5 mL of our ampicillin resistant bacteria, containing the plasmid of interest and grown
 +
overnight on LB medium, are centrifuged in falcon tubes at 4500 rpm for 6 minutes.</li>
 +
<li>The supernatant is removed and the pelleted bacteria are resuspended in 250μL of P1 buffer
 +
(containing 100 μg/mL RNase A). Thoroughly mix/ Vortex mix of the samples is required to
 +
ensure full resuspension. The samples are transferred into Eppendorf tubes.</li>
 +
<li>250 μL of P2 buffer is added to each sample and gently mixed by inverting the tube ca. 10 times.
 +
This lysis reaction should not exceed 5 minutes.</li>
 +
<li>350 μL of N3 buffer is pipetted to each sample, and gently but thoroughly mixed by inverting the
 +
tube ca. 10 times. The samples are then centrifuged in a table top centrifuge at 13.000 rpm for
 +
10 minutes.</li>
 +
<li>The supernatant contains our plasmid of interest, while the white pellet is cell debris. 800 μl of
 +
the supernatant are pipetted into Qiagen Spin Columns.</li>
 +
<li>The columns are centrifuged for 60 seconds. The plasmids are retained in a silica mesh, while
 +
remaining substances flow through the column into a collection tube.</li>
 +
<li>The column is washed with 500 μL of PB buffer and centrifuged (13.000 rpm for 60 sec) to
 +
remove any remaining nucleases which could interfere with further processing of the plasmids.</li>
 +
<li>750 μL of PE buffer is added to each sample and centrifuged for 60 seconds to remove any
 +
remaining wash buffer. The flow through is discarded and the spin column is placed into a fresh
 +
Eppendorf tube.</li>
 +
<li>To elute the bound plasmid DNA, 50 μL of EB buffer is added to the column. After letting the
 +
samples stand for ca. 2 minutes, each tube is centrifuged at high speed (13.000 rpm) for 60
 +
seconds.</li>
 +
<li>The spin column is discarded, the Eppendorf tubes now contain our desired plasmid DNA.</li></ul>
 +
</div>
 +
</section>
 +
<input type="radio" name="droptext" id="acc-close" />
 +
<input type="radio" name="droptext" id="cb16" />
 +
<section class="hull">
 +
<label class="hull-title" for="cb16">Enzyme Digest Protocol</label>
 +
<label class="hull-close" for="acc-close"></label>
 +
<div class="hull-content">
 +
A restriction enzyme digestion is usually performed in a volume of 20μL with 0.2-1.5μg of substrate DNA and two-to tenfold excess of enzyme.
 +
<br>
 +
If a large volume of DNA or enzyme is used, abnormal results may occur
 +
<br>
 +
When pipetting the samples in the different lanes of the gel, the enzyme componentof the tube needs to make up 1μL.
 +
<br>
 +
Method:
 +
1. The 5 lanes of the gel are as follows<ul>
 +
<li>Marker</li>
 +
<li>Control (with no cutting enzyme)</li>
 +
<li>1μL EcoR1</li>
 +
<li>1μL Pst1</li>
 +
<li>1μL EcoR1 and Pst1</li>
 +
2. Assemble the following components in a sterile tube:
 +
<br><br>
 +
<div class="TableBox">
 +
<img src="https://static.igem.org/mediawiki/2017/thumb/8/8d/T--Kent--EnzymeDigest.png/800px-T--Kent--EnzymeDigest.png" id="EnzymeTable">
 +
<br><br>
 +
</div>
 +
Note: Different lanes require different tubes to be made up
 +
3. Mix the solution gently by pipetting up and down
 +
4. Close the tube and centrifuge for a few seconds in a microcentrifuge
 +
5. Incubate at the specific enzyme’s optimum temperature (37 o C in this case)for 1-4 hours
 +
6. Add loading buffer to a 1 X final concentration and proceed to the gel analysis
 +
</div>
 +
</section>
 +
<input type="radio" name="droptext" id="acc-close" />
 +
<input type="radio" name="droptext" id="cb17" />
 +
<section class="hull">
 +
<label class="hull-title" for="cb17">PCR Protocol for Q5 High-Fidelity 2X Master Mix</label>
 +
<label class="hull-close" for="acc-close"></label>
 +
<div class="hull-content">All reaction components should be assembled on ice then quickly transferred to a thermocycler that’s been preheated to the denaturation temperature (98oC)
 +
<br>
 +
Components:
 +
All the components should be mixed prior to use
 +
<br><br>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/c/cd/T--Kent--PCR1.png" id="PCR1"></div>
 +
<br><br>
 +
Method:
 +
<ul>
 +
<li>Gently mix the reaction</li>
 +
<li>Collect all the liquid found at the bottom of the tube by a quick spin if needed</li>
 +
<li>Overlay the sample with mineral oil when using a PCR machine that doesn’t have a heated lid</li>
 +
<li>Transfer the PCR tubes to the PCR machine to begin thermocycling</li></ul>
 +
<br>
 +
Thermocycling conditions:
 +
<br><br>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/9/91/T--Kent--PCR2.png" id="PCR2"></div>
 +
<br><br>
 +
Annealing temperatures shouldn’t exceed 72 o C. You can use the NEB T m Calculator
 +
found on the New England BioLabs website to calculate temperatures needed and
 +
timings.
 +
<br>
 +
<br>
 +
<div class="lineSeparator"></div>
 +
<br>
 +
Guidelines
  
 +
Template
 +
<ul><li>A high quality, purified DNA template is preferred as it greatly improves PCR success. Recommended amounts of such a template are shown below for a 50uL reaction:</ul></li>
 +
<div class="TableBox"><img src="https://static.igem.org/mediawiki/2017/thumb/f/f3/T--Kent--PCR3.png/800px-T--Kent--PCR3.png" id="PCR3"></div>
 +
 +
<br>
 +
<br>
 +
Primers
 +
<ul><li>Oligonucleotide primers should generally be 20-40 nucleotides long while having a GC content of 40-60%</li>
 +
<li>Best results are seen when using each primer at a final concentration of 0.5uM in the reaction</li></ul>
 +
 +
<br>
 +
Mg2+ and additives
 +
<ul><li>The Q5 High-Fidelity Master Mix contains 2mM Mg++ when used at a 1X concentration, which is optimal for most PCR products</li></ul>
 +
 +
<br>
 +
Deoxynucleotides
 +
<ul><li>Final concentration of dNTPs is 200uM of each deoxynucleotide in the 1X final concentration</li>
 +
<li>Q5 High-Fidelity DNA Polymerase cannot incorporate dUTP and isn’t recommended for use with uracil-containing primers or templates</li></ul>
 +
 +
<br>
 +
Q5 High-Fidelity DNA Polymerase concentration
 +
<ul><li>Concentration in the Master Mix has been optimized for best results under a wide conditions range</li></ul>
 +
 +
<br>
 +
Denaturation
 +
<ul><li>Initial denaturation of 30 seconds occurs at 98oC, which is enough for most amplicons from pure DNA templates.</li>
 +
<li>Though longer denaturation times going up to 3 minutes can be used for templates that require it</li></ul>
 +
 +
<Br>
 +
Annealing
 +
<ul><li>Optimal annealing temperatures for this Master Mix tend to be higher than for other PCR polymerases</li>
 +
<li>Typically 10-30 second annealing steps should be used at 3oC above the Tm of the lower Tm primer</li>
 +
<li>Temperature gradients can also be used to optimize the annealing temperature for each primer pair<ul>
 +
<li>For higher Tm primer pairs, two-step cycling without a separate annealing step can be used</li></ul></li></ul>
 +
 +
<br>
 +
Extension
 +
<ul><li>Recommended extension temperature is 72oC
 +
<ul><li>With the recommended time being between 20-30 seconds per kb for complex, genomic samples.<li></ul><li>
 +
<li>The time can be reduced to 10 seconds per kb for simpler templates (plasmid, E.coli, etc.) or complex templates smaller than 1kb</li>
 +
<li>The extension time can be increased to 40 seconds per kb for cDNA or other long, complex templates if needed</li>
 +
<li>A final extension of 2 minutes at 72oC is recommended</li></ul>
 +
 +
 +
Cycle Number
 +
<ul><li>25-35 cycles yield sufficient products generally</li>
 +
<li>For genomic amplicons, 30-35 cycles are advised</li></ul>
 +
 +
<br>
 +
2-step PCR
 +
<ul><li>Used when primers have annealing temperatures exceeding or are equal to 72oC (≥ 72°C).</li>
 +
<li>This 2-step thermocycling protocol combines annealing and extension into one step</li></ul>
 +
 +
<br>
 +
Amplification of long products
 +
<ul><li>When amplifying products > 6kb, you can increase the extension time to 40-50 seconds per kb.</li></ul>
 +
 +
<br>
 +
PCR Product
 +
<ul><li>Products generated using this Master Mix have blunt ends</li>
 +
<li>If clonding is the next step then blunt-end cloning isn’t recommended</li>
 +
<li>If T/A-cloning is to be done, the DNA should be purified prior to A-addition, since the Q5 High-Fidelity DNA Polymerase will degrade any overhangs generated</li></ul>
 +
 +
</div>
 +
</section>
 +
<input type="radio" name="droptext" id="acc-close" />
 +
 +
</nav>
 
         <div id="foot">
 
         <div id="foot">
 
             <ul>
 
             <ul>
Line 838: Line 1,127:
 
}
 
}
  
// When the user clicks on the button, scroll to the top of the document
 
 
function topFunction() {
 
function topFunction() {
 
     document.body.scrollTop = 0;
 
     document.body.scrollTop = 0;

Latest revision as of 03:52, 2 November 2017


Experiments & Protocols