Difference between revisions of "Team:OUC-China/Demonstrate"

 
(30 intermediate revisions by 6 users not shown)
Line 7: Line 7:
 
<title>Demonstrate</title>
 
<title>Demonstrate</title>
 
<style type="text/css">
 
<style type="text/css">
.ouc-right{position: relative;}
+
.ouc-right{position: relative;}
.ouc-rightnav{position:absolute;right: -200%;top: 0; display: none;background-color: white;width: 200%;}
+
.ouc-rightnav{position:absolute;right: -200%;top: 0; display: none;background-color: white;width: 200%; z-index: 2001}
 
.ouc-right:visited{background-color:#D2D2D2; color: white;text-decoration: none;}
 
.ouc-right:visited{background-color:#D2D2D2; color: white;text-decoration: none;}
 
.ouc-right:hover .ouc-rightnav{display: inherit;}
 
.ouc-right:hover .ouc-rightnav{display: inherit;}
Line 14: Line 14:
 
.ouc-rightnav a:visited {color: #008EA1;text-decoration: none; }
 
.ouc-rightnav a:visited {color: #008EA1;text-decoration: none; }
 
.ouc-rightnav a:hover {background-color:#D2D2D2; color: white;text-decoration: none; }
 
.ouc-rightnav a:hover {background-color:#D2D2D2; color: white;text-decoration: none; }
 
+
.ouc-vicedown{position: absolute; top:50px; }
.ouc-vicedown{position: absolute; top:50px;width:100% }
+
 
.ouc-vicedown a{display: block;height: 40px; width: 100%;text-decoration: none;color: #008EA1; line-height: 40px;text-align: center;}
 
.ouc-vicedown a{display: block;height: 40px; width: 100%;text-decoration: none;color: #008EA1; line-height: 40px;text-align: center;}
 
.ouc-vicedown a:visited{color:#008EA1;text-decoration: none }
 
.ouc-vicedown a:visited{color:#008EA1;text-decoration: none }
.ouc-vicedown a:hover{color:  #EDEC8C}
+
.ouc-vicedown a:hover{color:  #EDEC8Cl}
body{padding-top: 50px;}
+
 
.ouc-nav{color:white; background-color: #008EA1;display:block; width: 100%; color: white;}
+
 +
.ouc-nav{color:white; background-color: #008EA1;display:block; width: 100%; color: white;padding: 0}
 
.ouc-nav:visited{text-decoration: none; color: white}
 
.ouc-nav:visited{text-decoration: none; color: white}
 
.ouc-nav:hover{text-decoration: none; background-color: white; color:#008EA1; }
 
.ouc-nav:hover{text-decoration: none; background-color: white; color:#008EA1; }
 
.ouc-navbar{position: relative;padding: 0;margin: 0;}
 
.ouc-navbar{position: relative;padding: 0;margin: 0;}
 
.ouc-navbar:hover .ouc-down{display: inherit;}
 
.ouc-navbar:hover .ouc-down{display: inherit;}
.ouc-down{position: absolute; top:50px;display: none;background-color: white;}
+
.ouc-down{position: absolute; top:50px;display: none;background-color: white; z-index: 1001}
 
.ouc-navdown{color: #008EA1;display: block; width: 100%;height: 40px;}
 
.ouc-navdown{color: #008EA1;display: block; width: 100%;height: 40px;}
 
.ouc-navdown:visited{text-decoration: none;color:#008EA1; }
 
.ouc-navdown:visited{text-decoration: none;color:#008EA1; }
.ouc-navdown:hover{background-color:#D2D2D2;color: white;text-decoration: none}
+
.ouc-navdown:hover{background-color:#D2D2D2;color: white;text-decoration: none; z-index: 1501}
.ouc-guide{position: fixed; width: 100%;top: 15px;z-index: 1000}
+
.ouc-guide{position: fixed; width: 100%;top: 15px;z-index:1000}
 
.ouc-page-header{border-bottom-color: #EDEC8C;border-bottom-width: thick;color: #008F75;}
 
.ouc-page-header{border-bottom-color: #EDEC8C;border-bottom-width: thick;color: #008F75;}
 
.top{position: fixed;bottom:0;right: 0;}
 
.top{position: fixed;bottom:0;right: 0;}
 
.top:hover{animation: upp 0.6s ;}
 
.top:hover{animation: upp 0.6s ;}
 +
 
@keyframes upp {
 
@keyframes upp {
 
0% {margin-bottom: 0;}
 
0% {margin-bottom: 0;}
Line 39: Line 40:
 
}
 
}
 
.ouc-reserve{background-color: #008EA1;color: white;}
 
.ouc-reserve{background-color: #008EA1;color: white;}
     .ouc-heading {color: #008EA1;}
+
     .ouc-heading {margin: 0;color: #008EA1;}
 
</style>
 
</style>
 
</head>
 
</head>
Line 47: Line 48:
 
<div class="ouc-guide" style="height: 50px;background-color:#008EA1 ;">
 
<div class="ouc-guide" style="height: 50px;background-color:#008EA1 ;">
 
<div class="row">
 
<div class="row">
    <div class="col-md-1"></div>
+
 
<div class="col-md-1" style="padding-top: 5px;"><a href="https://2017.igem.org/Team:OUC-China"><img src="https://static.igem.org/mediawiki/2017/8/89/T--OUC-China--logo.jpg" height="40px"/></a></div>
+
<div class="col-md-2 navbar-header" style="text-align: center; padding: 0">
<div class="col-md-1"></div>
+
<div class="col-md-1 ouc-navbar">
+
<button class="navbar-toggle" type="button" data-toggle="collapse" data-target=".navbar-responsive-collapse">
 +
        <span class="sr-only">Toggle Navigation</span>
 +
        <span class="caret" style="color: white"></span>
 +
 
 +
      </button>
 +
<a href="https://2017.igem.org/Team:OUC-China"><img src="https://static.igem.org/mediawiki/2017/8/89/T--OUC-China--logo.jpg" height="50px"/></a></div>
 +
 +
 +
<div class="collapse navbar-collapse navbar-responsive-collapse" style="padding: 0">
 +
 +
 +
 +
<div class="col-md-1" style="padding: 0"></div>
 +
<div class="col-md-1 ouc-navbar" style="padding: 0">
 
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Team<span class="caret"></span></a>
 
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Team<span class="caret"></span></a>
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
Line 58: Line 72:
 
    </div>
 
    </div>
 
</div>
 
</div>
<div class="col-md-1 ouc-navbar">
+
<div class="col-md-1 ouc-navbar" style="padding: 0">
 
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Project<span class="caret"></span></a>
 
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Project<span class="caret"></span></a>
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Description" style="line-height: 40px; " class="ouc-navdown">Description</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Description" style="line-height: 40px; " class="ouc-navdown">Description</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Design" style="line-height: 40px; " class="ouc-navdown">Design</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Design" style="line-height: 40px; " class="ouc-navdown">Design</a></div>
<div class="ouc-right">
+
                <div class="ouc-right">
        <a style="line-height: 40px; font-size: 15px;" class="ouc-navdown">Proof of concept</a>
+
        <a style="line-height: 40px; font-size: 15px;" class="ouc-navdown" href="https://2017.igem.org/Team:OUC-China/proof1">Proof of concept</a>
 
        <div class="ouc-rightnav">
 
        <div class="ouc-rightnav">
        <a href="" style="display: block">Basic fermentation</a>
+
        <a href="https://2017.igem.org/Team:OUC-China/proof1" style="display: block">Basic fermentation</a>
        <a href="" style="display: block">Adhesion platform</a>
+
        <a href="https://2017.igem.org/Team:OUC-China/proof2" style="display: block">Adhesion platform</a>
        <a href="" style="display: block">Mini-GRE</a>
+
        <a href="https://2017.igem.org/Team:OUC-China/proof3" style="display: block">MINI-GRE</a>
 
        </div>
 
        </div>
 
    </div>
 
    </div>
    <div><a href="https://2017.igem.org/Team:OUC-China/Demonstrate" style="line-height: 40px; " class="ouc-navdown">Demonstrate</a></div>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Demonstrate" style="line-height: 40px; " class="ouc-navdown">Demonstration</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/InterLab" style="line-height: 40px; " class="ouc-navdown">InterLab</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/InterLab" style="line-height: 40px; " class="ouc-navdown">InterLab</a></div>
    <div><a href="https://2017.igem.org/Team:OUC-China/Improve" style="line-height: 40px; " class="ouc-navdown">Improve</a></div>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Improve" style="line-height: 40px; " class="ouc-navdown">Improvement</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Notebook" style="line-height: 40px; " class="ouc-navdown">Notebook</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/Notebook" style="line-height: 40px; " class="ouc-navdown">Notebook</a></div>
 
    </div>
 
    </div>
 
</div>
 
</div>
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Model" style="line-height: 50px;text-align: center" class="ouc-nav">Model</a></div>
+
<div class="col-md-1" style="padding: 0"><a href="https://2017.igem.org/Team:OUC-China/Model" style="line-height: 50px;text-align: center" class="ouc-nav">Model</a></div>
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Parts" style="line-height: 50px;text-align: center" class="ouc-nav">Parts</a></div>
+
<div class="col-md-1" style="padding: 0"><a href="https://2017.igem.org/Team:OUC-China/Parts" style="line-height: 50px;text-align: center" class="ouc-nav">Parts</a></div>
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Safety" style="line-height: 50px;text-align: center" class="ouc-nav">Safety</a></div>
+
<div class="col-md-1" style="padding: 0"><a href="https://2017.igem.org/Team:OUC-China/Safety" style="line-height: 50px;text-align: center" class="ouc-nav">Safety</a></div>
<div class="col-md-2 ouc-navbar">
+
<div class="col-md-2 ouc-navbar" style="padding: 0">
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Human Practice<span class="caret"></span></a>
+
    <a href="https://2017.igem.org/Team:OUC-China/Engagement" style="line-height: 50px;text-align: center" class="ouc-nav">Human Practice<span class="caret"></span></a>
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
 
    <div class="ouc-down" style=" width: 100%; text-align: center">
 
    <div><a href="https://2017.igem.org/Team:OUC-China/HumanPractice" style="line-height: 40px; " class="ouc-navdown">Overview</a></div>
 
    <div><a href="https://2017.igem.org/Team:OUC-China/HumanPractice" style="line-height: 40px; " class="ouc-navdown">Overview</a></div>
Line 89: Line 103:
 
    </div>
 
    </div>
 
</div>
 
</div>
<div class="col-md-2 ouc-navbar" style="font-size: 15px">
+
<div class="col-md-2" style="padding: 0"></div>
<div class="ouc-vicedown" style="padding-top: 50px;">
+
<li style="list-style: none;margin: 0;padding: 0">
+
<ul style="margin: 0;padding: 0"><a href="#fermentation"><strong>Basic fermentation</strong></a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#enter"><i>Enteromorpha</i> pretreatment</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#pre">Pretreatment validation</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#yeasta">Yeast A</a></ul>
+
 
+
 
+
<ul style="margin: 0;padding: 0"><a href="#mini"><strong>Mini system</strong></a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#circuit">Circuit construction</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#function">Function verify</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#level">Transcription level</a></ul>
+
 
+
 
+
<ul style="margin: 0;padding: 0"><a href="#adhesion"><strong>Adhesion platform</strong></a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#ecoli"><i>E.coli</i> construction</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#yeast">Yeast construction</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#co">Co-cultivation</a></ul>
+
<ul style="margin: 0;padding: 0"><a href="#linkage">Linkage</a></ul>
+
 
+
 
+
</li>
+
</div>
+
 
</div>
 
</div>
 
+
 +
 +
 +
 
</div>
 
</div>
</div>
+
</div>
 
<!--此处是导航-->
 
<!--此处是导航-->
 
 
 
<div class="container">
 
<div class="container">
 
     <div class="page-header ouc-page-header">
 
     <div class="page-header ouc-page-header">
         <h1><strong>Demonstrate</strong></h1>
+
         <h1><strong>Demonstration</strong></h1>
 
     </div>
 
     </div>
     <h3 class="ouc-heading" id="fermentation"><strong>Basic fermentation</strong></h3>
+
     <h2 class="ouc-heading" id="fermentation"><strong>Basic fermentation</strong></h2>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     Our basic fermentation part derives from our local environmental problem, the outbreak of <i>Enteromorpha</i> along the coastline in Qingdao, so it is natural that we would eventually go back to the origin and try to solve the real world problem after validation of design concept in the lab. We aim to make use of <i>Enteromorpha</i> residue, where there is no trehalose left because it is the easiest to extract. Therefore, all we need to do is to deal with the cellulose and hemicellulose left in the residue.   
+
     Our basic fermentation part derives from our local environmental problem, the outbreak of <i>Enteromorpha</i> along the coastline in Qingdao, so it is natural that we would eventually go back to the origin and try to solve the real world problem after validation of design concept in the lab. We aim to make use of <i>Enteromorpha</i> residue, where there is no trehalose left because it is easiest to extract. Therefore, all we need to do is to deal with the cellulose and hemicellulose left in the residue.   
 
     </p>
 
     </p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     And we do treat our <i>Enteromorpha</i> powder with enzymes first and yeast later.(the <i>Enteromorpha</i> powder serves as the stimulation of <i>Enteromorpha</i> residue in real-world situation) The successful survival of the recombinant yeast strains that can use either xylose or cellubiose as the only carbon source can fully prove the feasibility of our designed pathway.  
+
     We do treat our <i>Enteromorpha</i> powder with enzymes first and yeast later.(the <i>Enteromorpha</i> powder serves as the stimulation of <i>Enteromorpha</i> residue in real-world situation) The successful survival of the recombinant yeast strains that can use either xylose or cellubiose as the only carbon source can fully prove the feasibility of our designed pathway.  
 
     </p>
 
     </p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
Line 134: Line 130:
 
     </p>
 
     </p>
 
     <div class="container">
 
     <div class="container">
     <h3 class="ouc-heading" style="color: #66BCC7" id="enter"><strong><i>Enteromorpha</i> pretreatment</strong></h3>
+
     <h2 class="ouc-heading" style="color: #66BCC7" id="enter"><strong><i>Enteromorpha</i> pretreatment</strong></h2>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
 
         We treat the Enteromorpha powder (residue) with 0.2% H<sub>2</sub>O<sub>2</sub> to remove the lignin then cellulase and xylanase to produce xylose & cellubiose.  
 
         We treat the Enteromorpha powder (residue) with 0.2% H<sub>2</sub>O<sub>2</sub> to remove the lignin then cellulase and xylanase to produce xylose & cellubiose.  
Line 159: Line 155:
 
     </div>
 
     </div>
 
    
 
    
     <h3 class="ouc-heading" style="color: #66BCC7" id="pre"><strong>Pretreatment validation</strong></h3>
+
     <h2 class="ouc-heading" style="color: #66BCC7" id="pre"><strong>Pretreatment validation</strong></h2>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     After that we detect the existence of them with HPLC. The peak appears at the same point suggesting that they are the same substance. In other words, we successfully proved that the downstream product of <i>Enteromorpha</i> powder after pretreatment contains mainly xylose and cellubiose.
+
     After that we detect the existence of xylose & cellubiose with HPLC. The peak appears at the same point, suggesting that they are the same substance. In other words, we successfully proved that the downstream product of <i>Enteromorpha</i> powder after pretreatment contains mainly xylose and cellubiose.
 
     </p>
 
     </p>
 
     <div class="row">
 
     <div class="row">
Line 193: Line 189:
 
     </div>
 
     </div>
 
    
 
    
     <h3 class="ouc-heading" style="color: #66BCC7" id="yeasta"><strong>Yeast A that ferment xylose</strong></h3>
+
     <h2 class="ouc-heading" style="color: #66BCC7" id="yeasta"><strong>Yeast A that ferments xylose</strong></h2>
 
    
 
    
 
    
 
    
Line 200: Line 196:
 
     </p>
 
     </p>
 
<p style="font-size: 20px">
 
<p style="font-size: 20px">
We cultivate the EBY100(XDH-XR) and the EBY100(control) in SC adding 2% xylose as the sole carbon source, adjusting initial OD<sub>600</sub> about 1.2,and placing in the shaking incubator of 30℃,180rpm to ferment.
+
We cultivate the EBY100(XDH-XR) and the EBY100(control) in SC adding 2% xylose as the sole carbon source, adjusting initial OD<sub>600</sub> about 1.2,and placing in the shaking incubator of 30℃,180rpm to ferment.
 
</p>
 
</p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     The following result can well demonstrate that the strain that carries our plasmid grows much better than the strain that not and reach the stationary phases after 40 hours’cultivation.
+
     The following result can well demonstrate that the strain that carries our plasmid grows much better than the strain that not (the stationary phase OD of EBY100(XDH-XR)is nearly 2 times that of WT EBY100)and reach the stationary phases after 40 hours’cultivation.
 
     </p>
 
     </p>
 
    
 
    
Line 209: Line 205:
 
     <p style="color: gray;text-align: center">
 
     <p style="color: gray;text-align: center">
 
     <img src="https://static.igem.org/mediawiki/2017/7/73/T--OUC-China--pro1-4.png" width="700"/>
 
     <img src="https://static.igem.org/mediawiki/2017/7/73/T--OUC-China--pro1-4.png" width="700"/>
     <br/>Figure 1.8 Growth curve of strains of our recombinant strain and negative control.
+
     <br/>Figure 1.8 Growth curve of strains of our recombinant strain and negative control. Error bars represent standard deviation of four biological replicates, so do the other charts in this section.
 
     </p>
 
     </p>
 
    
 
    
Line 216: Line 212:
 
     </p>
 
     </p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     The following chart shows the xylose content of both our recombinant strain and negative control. It is obvious that in our xylose-utilize strain, xylose content decrease as time goes by while for the negative strain the xylose content stays steady, indicating the disability of using xylose.
+
     The following chart shows the xylose content of both our recombinant strain and negative control. It is obvious that in our xylose-utilize strain, xylose content decrease (especially rapid in the first 40h) as time goes by while for the negative strain the xylose content stays steady, indicating the disability of using xylose.
 
     </p>
 
     </p>
 
    
 
    
Line 246: Line 242:
 
    
 
    
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     For the cellolose plasmid, we integrate cellubiose-degrading gene CDT and GH-1 into pYC230 by Gibson.
+
     For the cellulose plasmid, we integrate cellubiose-degrading gene CDT and GH-1 into pYC230 by Gibson.
 
    
 
    
 
     <p style="color: gray;text-align: center">
 
     <p style="color: gray;text-align: center">
     <img src="https://static.igem.org/mediawiki/2017/e/ec/T--OUC-China--demo19.png" width="700"/>
+
     <img src="https://static.igem.org/mediawiki/2017/4/47/T--OUC-China--basic.png" width="600px"/>
    <br/>Figure 1.11
+
    <br/>Fig 1.9 from lane 1 to 7 respectively:pYC230-GH1-CDT1 single enzyme digestion; pYC230-XYL1-XYL2 single enzyme digestion;marker; pYC230-GH1-CDT1 circular plasmid;pYC230-XYL1-XYL2 circular plasmid; marker
 
     </p>
 
     </p>
 
    
 
    
Line 277: Line 273:
 
             <p style="color: gray;text-align: center">
 
             <p style="color: gray;text-align: center">
 
             <img src="https://static.igem.org/mediawiki/2017/6/6e/T--OUC-China--demo20.png" width="450"/>
 
             <img src="https://static.igem.org/mediawiki/2017/6/6e/T--OUC-China--demo20.png" width="450"/>
             <br/>Figure 1.12
+
             <br/>Figure 1.12 Concentration of cellobiose,ethanol as well as OD600 of biomass change in 140h for cellobiose-recombinant strain
 
             </p>
 
             </p>
 
     </div>
 
     </div>
Line 283: Line 279:
 
             <p style="color: gray;text-align: center">
 
             <p style="color: gray;text-align: center">
 
             <img src="https://static.igem.org/mediawiki/2017/5/59/T--OUC-China--demo21.png" width="450"/>
 
             <img src="https://static.igem.org/mediawiki/2017/5/59/T--OUC-China--demo21.png" width="450"/>
             <br/>Figure 1.13  
+
             <br/>Figure 1.13 Concentration of cellobiose,ethanol as well as OD600 of biomass change in 140h for negative control
 
             </p>
 
             </p>
 
     </div>
 
     </div>
Line 294: Line 290:
 
             <p style="color: gray;text-align: center">
 
             <p style="color: gray;text-align: center">
 
             <img src="https://static.igem.org/mediawiki/2017/f/fc/T--OUC-China--pro1-12.png" width="450"/>
 
             <img src="https://static.igem.org/mediawiki/2017/f/fc/T--OUC-China--pro1-12.png" width="450"/>
             <br/>Figure 1.14  
+
             <br/>Figure 1.14 The glucose concentration  change in 140h for recombinant EBY100(CDT-1-GH-1)  and WT EBY100
 
             </p>
 
             </p>
 
     </div>
 
     </div>
Line 300: Line 296:
 
             <p style="color: gray;text-align: center">
 
             <p style="color: gray;text-align: center">
 
             <img src="https://static.igem.org/mediawiki/2017/9/9c/T--OUC-China--pro1-13.png" width="450"/>
 
             <img src="https://static.igem.org/mediawiki/2017/9/9c/T--OUC-China--pro1-13.png" width="450"/>
             <br/>Figure 1.15  
+
             <br/>Figure 1.15 The ethanol concentration  change in 140h for recombinant EBY100(CDT-1-GH-1)  and WT EBY100
 
             </p>
 
             </p>
 
     </div>
 
     </div>
Line 313: Line 309:
 
     </p>
 
     </p>
 
    
 
    
        <p style="font-size: 20px">
+
     
    And for a more visualized display, we use plate streaking to show the growth condition of our two recombinative strains and negative strains in different carbon source. We make three plates with either xylose, cellobiose or xylose plus cellobiose as sole or compound carbon source, respectively and monitor the growth of each strain in three different plate after cultivating for 32 hours at 30℃.
+
    </p>
+
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
 
     We successfully confirmed in lab through simulation that our idea has been turn into real-world practice!
 
     We successfully confirmed in lab through simulation that our idea has been turn into real-world practice!
 +
 +
<br/><br/><a href="https://2017.igem.org/Team:OUC-China/proof1">See more details in our proof page</a>
 
     </p>
 
     </p>
 +
     
 
     <br/><br/><br/><br/>
 
     <br/><br/><br/><br/>
 
     </div>
 
     </div>
Line 330: Line 327:
 
      
 
      
 
      
 
      
     <h3 class="ouc-heading" id="mini"><strong>MINI-GRE</strong></h3>
+
     <h2 class="ouc-heading" id="mini"><strong>MINI-GRE</strong></h2>
 +
    <h3 style="color: #66BCC7"><strong>Circuit construction</strong></h3>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     We set four different permutations for our MINI promoter and mini terminator thus constructed four different circuits. For each one, the strength level of promoters are characterized by yECitrine, a kind of yellow fluorescent protein. And we use red fluorescent protein mStrawberry to represent the read through of terminators.
+
     To explore the feasibility of MINI-GRE(genetic regulatory elements) by combination of promoters and terminators as we mentioned above, we designed four promoter-terminator pairs, and constructed four different report circuits for them (fig. A)
 
     </p>
 
     </p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     In the wet lab study, we measured both the expression level of YFP and RFP to validate the expected performance of the MINI system in comparation of normal promoters and terminators whose expression level are measured as well.
+
     For circuit 1, we pair promoter CYC1 with terminator CYC1, which are among the most commonly used native promoters and terminators and also have a relative medium strength in yeast.[4] For circuit 2, promoter CYC1 is paired with terminator MINI. The MINIp-CYC1t and MINIp-MINIt, respectively, serves as the chosen pair for circuit 3 and 4.    </P>
 +
    <p style="font-size: 20px">
 +
    For convenience, we named the“CYC1p-yECitrine-CYC1t-mStrawberry-CYC1t”as“CC”,“CYC1p-yECitrine-MINIt-mStrawberry-CYC1t”as“CM”,“MINIp-yECitrine-CYC1t-mStrawberry-CYC1t”as“MC”, and“MINIp-yECitrine-MINIt-mStrawberry-CYC1t” as “MM”,hereafter.  
 
     </p>
 
     </p>
 +
    <div class="row">
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/e/e2/T--OUC-China--pro3-1-1.png" width="500px"/>
 +
</div>
 +
<div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/c/c5/T--OUC-China--pro3-1-2.png" width="500px"/>
 +
</div>
 +
</div>
 +
  <div class="row">
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/6/6c/T--OUC-China--pro3-1-3.png" width="500px"/>
 +
</div>
 +
<div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/2/2e/T--OUC-China--pro3-1-4.png" width="500px"/>
 +
</div>
 +
</div>
 +
    <p style="text-align: center; color: gray">
 +
    Fig. A the plasmid map of our circuit CC, CM, MC, MM. The CC circuit includes the commonly used native promoter CYC1 and terminator CYC1. The MM circuit includes the combination of MINI promoter and MINI terminator.
 +
    </p>
 +
   
 +
   
 +
   
 +
   
 +
   
 +
   
 +
    <h3 style="color: #66BCC7"><strong>Results</strong></h3>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
     Meanwhile, we monitored the growth rate of the recombinant yeast to specify the expression of MINI system at a particular living stage. Moreover, we conducted qPCR towards corresponding protein in order for a further validation of MINI system’s strong expression on a post-transcriptional level.  
+
     For each circuit, the strength of promoters was characterized by yECitrine, a kind of yellow fluorescent protein was used to detect the output level of particular promoter, terminator or promoter-terminator pair. And the red fluorescent signal from RFP mStrawberry can represent the relative read-through efficiency of particular terminator in the circuits including the same promoter.
 
     </p>
 
     </p>
 
     <p style="font-size: 20px">
 
     <p style="font-size: 20px">
    We also expend the application range of this system by contact with other teams and test it in different yeast strains and experimental environment, which can also be an important part of our collaboration. the MINI system has a high performance ratio in driving gene expression. The obvious advantage of the MINI system is to provide a simple model for studying promoter mutations and promoter modifications.
+
          While monitoring the growth rate of four strains containing different expression regulatory devices, we also characterized the expression strength of the promoter-terminator pairs by detecting the fluorescence intensity of yECitrine in each circuit. As we can see in the bar chart, the ratio and relationship of the signals from 4 circuits become relatively stable at the early stationary phase, which hints that the expression level may reach the dynamic steady state at the time point 22 hours. And the results from 22 hours point also match the strength relationship of the two promoters in previous research, although we used another yeast strain here. [2, 5] Therefore, comparing with the mid-log phase data, we tend to believe that this results can reflect the true dynamic characteristics of the genetic regulatory devices, although we will research this phenomenon in our future work.(Fig. D)
 +
 
 +
    </p>
 +
    <p style="font-size: 20px">
 +
    So, in order to better reflect the dynamic behaviors of the circuits we tend to use data from mid-log phase during the growth process.
 +
    <div class="row">
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/b/b2/T--OUC-China--pro3-2-1.png" width="500px"/>
 +
</div>
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/4/43/T--OUC-China--pro3-2-2.png" width="500px"/>
 +
</div>
 +
    </div>
 +
    <div class="row">
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/1/15/T--OUC-China--pro3-2-3.png" width="500px"/>
 +
</div>
 +
        <div class="col-md-6">
 +
            <img src="https://static.igem.org/mediawiki/2017/2/25/T--OUC-China--pro3-2-4.png" width="500px"/>
 +
</div>
 +
    </div>
 +
    <p style="text-align: center; color: gray">
 +
    Fig. B The growth curve of the four strains with different promoter- terminator pairs. Error bars represent standard deviation of three biological replicates.
 +
 
 +
    </p>
 +
    <p style="text-align: center; color: gray">
 +
        <img src="https://static.igem.org/mediawiki/2017/1/10/T--OUC-China--pro3-3-0.png" width="800px"/>
 +
    <br/>Fig. C The fluorescence/Abs600 in different time. Error bars represent standard deviation of three biological replicates.
 +
    <p style="text-align: center; color: gray">
 +
        <img src="https://static.igem.org/mediawiki/2017/1/1e/T--OUC-China--pro3-3.png" width="800px"/>
 +
    <br/>Fig.D The fluorescence/Abs600 of strains with different promoter-terminator pairs, after being cultivating for 22 hours. Error bars represent standard deviation of three biological replicates.
 
     </p>
 
     </p>
 
      
 
      
     <div class="container">
+
      
        <h3 class="ouc-heading" style="color: #66BCC7" id="circuit"><strong>Circuit construction</strong></h3>
+
   
 +
   
 +
    <h3 style="color: #66BCC7"><strong>Function Verification of promoters and terminators</strong></h3>
 +
    <p style="font-size: 20px">
 +
    Through comparing “CC” with “CM”, we can learn that the Fluorescence/Abs600 of “CM”is nearly three times of “CC”, proving that the strength of MINI terminator is higher than that of CYC1 terminator. (Fig. D)(At first we think of measuring this characteristic by comparing yECitrine fluorescence /mStrawberry fluorescence. However, considering that the fluorescence of mStrawberry is too low, we cannot expect an accurate result due to the high error rate. ) We assume that both MINI terminators and CYC1 terminators can effectively stop the transcription, so the mRNA of mStrawberry generated behind these terminators can hardly be detected, neither does the fluorescence of mStrawberry. 
 +
  
<p style="text-align: center;color: gray">
+
    </p>
<img src="https://static.igem.org/mediawiki/2017/6/62/T--OUC-China--pro3-1.png" width="800px"/>
+
    <p style="font-size: 20px">
<br/>Figure 2.1 The plasmid map of our circuit.
+
    What’s more, the Fluorescence/Abs600 of “MM”is also nearly 3-fold compared with “MC”, proving that the strength of MINI promoter is higher than CYC1 promoter.  
</p>
+
+
<p style="font-size: 20px">
+
We synthesized minip, minit, cyc1p, cyc1t and built four circuit with Gibson assembly by arranging them in different orders. The plasmids were then imported into yeast EBY100.
+
</p>
+
  
 
  
       
+
    </p>
       
+
    <p style="font-size: 20px">
        <h3 class="ouc-heading" style="color: #66BCC7" id="function"><strong>Function verify</strong></h3>
+
    In addition, when we compared “MM” with “CC” which is the commonly used promoter-terminator pair, we found that the difference is nearly 6-fold. (Fig. D)
        <p style="font-size: 20px">
+
    </p>
        We characterize the strength of the MINI system by detecting the fluorescence intensity of the yeCitrine. We measured the growth curves of four strains containing different expression systems, and measured the intensity of excitation and emission of yeCitrine, respectively 502nm and 532nm.  
+
    <p style="font-size: 20px">
        </p>
+
    From our results, we confirmed that the MINI promoter and MINI terminator do be superior to CYC1 promoter and CYC1 terminator, not only in length but also in strength. (Fig. E)
<p style="font-size: 20px">
+
 
For convenience, we named the “Pmini-yECitrine-Tcyc1-mStrawberry-Tcyc1” as “mc”, “Pmini-yECitrine-Tmini-mStrawberry-Tcyc1” as “mm”, “Pcyc1-yECitrine-Tcyc1-mStrawberry-Tcyc1” as “cc” and “Pcyc1-yECitrine-Tmini-mStrawberry-Tcyc1” as “cm” hereafter.
+
    </p>
</p>
+
    <p style="text-align: center; color: gray">
        <p style="text-align: center;color: gray">
+
    <img src="https://static.igem.org/mediawiki/2017/1/15/T--OUC-China--pro3-5.png" width="800px"/>
        <img src="https://static.igem.org/mediawiki/2017/1/1e/T--OUC-China--pro3-3.png" width="600px"/>
+
    <br/>Fig. E Length and output level of 4 different promoter–terminator combination. Error bars represent standard deviation of three biological replicates
        <br/>Figure 2.2 The strength of the MINI system.
+
    </p>
        </p>
+
   
        <p style="font-size: 20px">
+
   
        The fluorescence intensity is: mm> cm> mc> cc, in which mm circuit has the highest expression, proving our successful construction of MINI system. To draw a conclusion, the system has a strong expression, but a very short nucleotide sequence. In this example, the combination of weak promoter + strong terminator is better than that of strong promoter + weak terminator.  
+
    <h3 style="color: #66BCC7"><strong>Robustness in different host</strong></h3>
        </p>
+
    <p style="font-size: 20px">
        <p style="font-size: 20px">
+
    In order to verify that the MINI-GRE is able to work with the same rule in a variety of yeast strains and expend the application range of these MINI regulatory devices, we invited other teams to repeat the same experiments in different yeast strains and experimental environment, which can also be an important part of our collaboration.  
        With the help of the other two teams, we completed the repeated testing of the MINI system. The time of the test data is the late logarithmic phase of yeast growth. The yeast strains we used with NJU-China were Saccharomyces cerevisiae EBY 100. The yeast strain used in TJU China was Synthetic yeast synX.
+
 
        </p>
+
    </p>
        <p style="text-align: center;color: gray">
+
    <p style="font-size: 20px">
        <img src="https://static.igem.org/mediawiki/2017/c/ca/T--OUC-China--pro3-4.png" width="600px" />
+
    The time point of the data collection is early stationary phase of yeast growth. The yeast strains we used with Nanjing-China were Saccharomyces cerevisiae EBY100. The yeast strain used in Tianjin was synX, the yeast strain with chemical synthetic chromosome.  
        <br/>Figure 2.3 MINI system fluorescence measurements from three teams, OUC-Chian,TJU-China, NJU-China (left to right).
+
    </p>
        </p>
+
    <p style="font-size: 20px">
        <p style="font-size: 20px">
+
    From the result of other colleges, we can know that our MINI-GRE can also work in other yeast strains. (Fig. F)
        Through the fluorescence intensity map, we have not yet clear the true advantage of MINI system. But from the following figure, we can directly observe the relationship between a nucleotide base number and fluorescence intensity. The red arrows indicate the short and strong features of the mm gene circuit.
+
    </p>
        </p>
+
    <p style="text-align: center; color: gray">
        <p style="text-align: center;color: gray">
+
    <img src="https://static.igem.org/mediawiki/2017/c/ca/T--OUC-China--pro3-4.png"/>
        <img src="https://static.igem.org/mediawiki/2017/1/15/T--OUC-China--pro3-5.png" width="600px"/>
+
    <br/>Fig. F The fluorescence/Abs600 of strains with different promoter-terminator pairs in the late  from three teams, OUC-China, Tianjin and Nanjing-China(left to right). Error bars represent standard deviation of three biological replicates.
        <br/>Figure 2.4 Promoter and terminator of the nucleotide base length and intensity(For example, mm represents the base length of Pmini + Tmini).
+
    </p>
        </p>
+
   
        <p style="font-size: 20px">
+
   
        In order to verify that the MINI system was able to work in a variety of yeast strains, we invited other teams to conduct a repeat experiment. Especially in TJU-China, the use of their own synthesis of yeast to complete this experiment also verified the MINI system with versatility.
+
   
        </p>
+
    <h3 style="color: #66BCC7"><strong>Transcription Level Assay by qPCR</strong></h3>
       
+
    <p style="font-size: 20px">
        <h3 class="ouc-heading" style="color: #66BCC7" id="level"><strong>Validation of expression on transcription level</strong></h3>
+
    Moreover, we run qPCR towards corresponding protein in order for a further validation of different promoter-terminator combination’s expression on a post-transcriptional level.  
        <p style="font-size: 20px">
+
 
        The result of qPCR shows that at 22<sup>nd</sup> hour the system reached the highest expression intensity and the expression of four circuits is shown below. The error bars indicate s.d. of mean of experiments in triplicate.
+
    </p>
        </p>
+
    <p style="font-size: 20px">
        <p style="text-align: center;color: gray">
+
    The result from qPCR assay shows that at the 22nd hour from setting up culture, the circuits reached the highest expression intensity and the expression level of four circuits is shown below.  
        <img src="https://static.igem.org/mediawiki/2017/4/46/T--OUC-China--pro3-6.png" width="800px"/>
+
 
        <br/>Figure 2.5 The expression of four circuits at 22<sup>nd</sup> hour.
+
    </p>
        </p>
+
    <p style="text-align: center; color: gray">
        <p style="font-size: 20px">
+
    <img src="https://static.igem.org/mediawiki/2017/4/46/T--OUC-China--pro3-6.png" width="800px"/>
        In the chart, the RNA content of yECitrine comes as the following order: mm>mc>cm>cc, which is not completely consist with the result of protein level. mm’s RNA content is several times that of cc. Compared to Figure b, this difference in RNA content does not reflect the protein content very well, yet still, our MINI system has an obvious superiority over normal combination (cc), which confirmed our hypothesis. As shown above, generally the magnitude of leakage is over 100 times smaller, so it can be ignored to some extent.
+
    <br/>Fig. G The relative transcription level of yECitrine and mStrawberry at the 22nd hour from setting up culture. Error bars represent standard deviation of three biological replicates.
        </p>
+
 
        <p style="font-size: 20px">
+
    </p>
        To draw a conclusion, mm has the smallest size and the strongest expression with a leakage that can almost be ignored. What’s more our system functions well in different strains and experimental conditions, which proves its potential to apply in various situations.
+
    <p style="font-size: 20px">
        </p>
+
    However, the transcript level of yECitrine doesn’t matched the fluorescence very well. We infer that it may be caused by the experimental error of the total mRNA concentration and the little mismatch of the primers.  
       
+
 
       
+
    </p>
</div>
+
    <p style="font-size: 20px">
+
    Luckily, we can still learn that the transcript level of mStrawberry is very low, which means the transcriptional read through of both CYC1t and MINI terminator can be overlooked; they can efficiently terminate the transcription, which confirmed the assumption before.
+
    </p>
</div>
+
<h3 style="color: #66BCC7"><strong>Conclusion</strong></h3>
 +
    <p style="font-size: 20px">
 +
    To draw a conclusion, from our experiments, we confirmed the superiority of the MINI-GRE (MINI promoter-MINI terminator pair), which can be summed into three aspects:
 +
    </p>
 +
    <p style="font-size: 20px">
 +
    (1) Short but strong, which decreases the possibility of undesired homologous reorganization and provide significant output strength compared with commonly used promoter-terminator pair.
 +
    </p>
 +
    <p style="font-size: 20px">
 +
    (2) Versatile,which can work in different yeast strains and provide robust function for extensive application.
 +
    </p>
 +
    <p style="font-size: 20px">
 +
    (3) Well-modularited, has good modularity because of the low transcriptional read through efficiency from minimal terminator, which is an important characteristic in synthetic biology.  
 +
<br/><br/><br/><a href="https://2017.igem.org/Team:OUC-China/proof3">See more details in our proof page</a>
 +
    </p>
 +
 
 +
 
 +
 
 +
 
 
</div>
 
</div>
 
<!--此处是置顶及赞助页-->
 
<!--此处是置顶及赞助页-->

Latest revision as of 13:57, 18 November 2017

Demonstrate

Basic fermentation

Our basic fermentation part derives from our local environmental problem, the outbreak of Enteromorpha along the coastline in Qingdao, so it is natural that we would eventually go back to the origin and try to solve the real world problem after validation of design concept in the lab. We aim to make use of Enteromorpha residue, where there is no trehalose left because it is easiest to extract. Therefore, all we need to do is to deal with the cellulose and hemicellulose left in the residue.

We do treat our Enteromorpha powder with enzymes first and yeast later.(the Enteromorpha powder serves as the stimulation of Enteromorpha residue in real-world situation) The successful survival of the recombinant yeast strains that can use either xylose or cellubiose as the only carbon source can fully prove the feasibility of our designed pathway.

Along with the proof of our concept, we validate the upstream pathway from real algae powder, which has exactly the same constituent as Enteromorpha residue, and we can say that our idea can apply to real-world problems!

Enteromorpha pretreatment

We treat the Enteromorpha powder (residue) with 0.2% H2O2 to remove the lignin then cellulase and xylanase to produce xylose & cellubiose.


Figure 1.1 Enteromorpha Powder


Figure 1.2 Treat the residue with 0.2% H2O2.


Figure 1.3 Enzymatic hydrolysis solution of Enteromorpha fiber

Pretreatment validation

After that we detect the existence of xylose & cellubiose with HPLC. The peak appears at the same point, suggesting that they are the same substance. In other words, we successfully proved that the downstream product of Enteromorpha powder after pretreatment contains mainly xylose and cellubiose.


Figure 1.4 Result of standard cellubiose.


Figure 1.6 Result of standard xylose.


Figure 1.5 Result of our sample (the doublet indicate there is impurity in our sample).


Figure 1.7 Result of our sample (the smaller peak indicate there is impurity in our sample).

Yeast A that ferments xylose

After introducing the plasmid we constructed that contains gene XYL1,XYL2 into S.cerevisiae EBY100. We creat a xylose-utilize strain. We measured the growth rate of both our recombinant strain and negative control to prove the superiority of our new strain in xylose utilization.

We cultivate the EBY100(XDH-XR) and the EBY100(control) in SC adding 2% xylose as the sole carbon source, adjusting initial OD600 about 1.2,and placing in the shaking incubator of 30℃,180rpm to ferment.

The following result can well demonstrate that the strain that carries our plasmid grows much better than the strain that not (the stationary phase OD of EBY100(XDH-XR)is nearly 2 times that of WT EBY100)and reach the stationary phases after 40 hours’cultivation.


Figure 1.8 Growth curve of strains of our recombinant strain and negative control. Error bars represent standard deviation of four biological replicates, so do the other charts in this section.

For an immediate evidence, we need to know exactly how xylose content change in the medium. We use HPLC to detect the changing concentration of xylose, getting more data to support our idea that our cells can utilize the carbon sources as long as the concentration of xylose decrease with time.

The following chart shows the xylose content of both our recombinant strain and negative control. It is obvious that in our xylose-utilize strain, xylose content decrease (especially rapid in the first 40h) as time goes by while for the negative strain the xylose content stays steady, indicating the disability of using xylose.


Figure 1.9 Xylose content of both our recombinant strain and negative control.

In addition, to finally realize our design, the yeast need to ferment on xylose only. Therefore, we use the SBA-Biosensor to detect the ethanol content in the medium, which can convert the reaction of immobilized enzyme to electrochemical signal and help make a curve reflecting the ethanol change in the culture condition.

The following chart shows the ethanol content of both our recombinant strain and negative control.

Gladly, the curve of xylose-consuming strain goes gradually up along with cultivating hours, and reach the plateau at around 90 hours, which is consist with the xylose consuming curve, indicating that our strain do produce ethanol on the basis of xylose, thus realizes our design and proves the concept of basic fermentation part.


Figure 1.10 Ethanol content of both our recombinant strain and negative control.

In the same way, we conduct a series of experiment to confirm that our cellubiose-utilizing pathway also worked.

For the cellulose plasmid, we integrate cellubiose-degrading gene CDT and GH-1 into pYC230 by Gibson.


Fig 1.9 from lane 1 to 7 respectively:pYC230-GH1-CDT1 single enzyme digestion; pYC230-XYL1-XYL2 single enzyme digestion;marker; pYC230-GH1-CDT1 circular plasmid;pYC230-XYL1-XYL2 circular plasmid; marker

We introduce the plasmid into S.cerevisiae EBY100 and construct the cellubiose-utilize strain successfully and then test the growth rate of both our recombinant strain and negative control.

We cultivate the EBY100(CDT-GH1) and the EBY100(control) in SC adding 2% cellubiose as the sole carbon source, adjusting initial OD600 about 1,and placing in the shaking incubator of 30℃,180rpm to ferment.

Using HPLC we detect the changing concentration of cellubiose. The result shows that the concentration of cellubiose decrease with time, indicating a well utilization of cellubiose.

The following chart shows of both our recombinant strain (left) and negative control (right).

To examine the production of ethanol, we use the SBA-Biosensor, the same as in the xylose pathway.

The following chart shows the cellubiose content, ethanol content, and growth rate of both our cellubiose recombinant strain (left) and negative control (right).


Figure 1.12 Concentration of cellobiose,ethanol as well as OD600 of biomass change in 140h for cellobiose-recombinant strain


Figure 1.13 Concentration of cellobiose,ethanol as well as OD600 of biomass change in 140h for negative control

We acquired similar trend of those curves except one, the ethanol content, which dropped from around 70 hours. Considering the difference between monosaccharide and disaccharide, we suppose that the accumulation of the glucose when making use of cellubiose might be the reason lying beneath. Therefore, we detect the glucose content of the medium after that to validate our assumption.


Figure 1.14 The glucose concentration change in 140h for recombinant EBY100(CDT-1-GH-1) and WT EBY100


Figure 1.15 The ethanol concentration change in 140h for recombinant EBY100(CDT-1-GH-1) and WT EBY100

The result shows that glucose content in the medium reach a peak at about 40 hours and then decrease rapidly, which is consist with our expectation that the glucose in yeast was transformed gradually into acetic acid. Ethanol might then participate in further metabolic procedure with acetic acid thus was turned into ethyl acetate when glucose accumulates to a particular concentration.

Despite that, we can tell from the distinct difference between cellubiose-consuming strain and negative control that our approach of using yeast to transform Enteromorpha residue into ethanol finally worked!

We successfully confirmed in lab through simulation that our idea has been turn into real-world practice!

See more details in our proof page





MINI-GRE

Circuit construction

To explore the feasibility of MINI-GRE(genetic regulatory elements) by combination of promoters and terminators as we mentioned above, we designed four promoter-terminator pairs, and constructed four different report circuits for them (fig. A)

For circuit 1, we pair promoter CYC1 with terminator CYC1, which are among the most commonly used native promoters and terminators and also have a relative medium strength in yeast.[4] For circuit 2, promoter CYC1 is paired with terminator MINI. The MINIp-CYC1t and MINIp-MINIt, respectively, serves as the chosen pair for circuit 3 and 4.

For convenience, we named the“CYC1p-yECitrine-CYC1t-mStrawberry-CYC1t”as“CC”,“CYC1p-yECitrine-MINIt-mStrawberry-CYC1t”as“CM”,“MINIp-yECitrine-CYC1t-mStrawberry-CYC1t”as“MC”, and“MINIp-yECitrine-MINIt-mStrawberry-CYC1t” as “MM”,hereafter.

Fig. A the plasmid map of our circuit CC, CM, MC, MM. The CC circuit includes the commonly used native promoter CYC1 and terminator CYC1. The MM circuit includes the combination of MINI promoter and MINI terminator.

Results

For each circuit, the strength of promoters was characterized by yECitrine, a kind of yellow fluorescent protein was used to detect the output level of particular promoter, terminator or promoter-terminator pair. And the red fluorescent signal from RFP mStrawberry can represent the relative read-through efficiency of particular terminator in the circuits including the same promoter.

While monitoring the growth rate of four strains containing different expression regulatory devices, we also characterized the expression strength of the promoter-terminator pairs by detecting the fluorescence intensity of yECitrine in each circuit. As we can see in the bar chart, the ratio and relationship of the signals from 4 circuits become relatively stable at the early stationary phase, which hints that the expression level may reach the dynamic steady state at the time point 22 hours. And the results from 22 hours point also match the strength relationship of the two promoters in previous research, although we used another yeast strain here. [2, 5] Therefore, comparing with the mid-log phase data, we tend to believe that this results can reflect the true dynamic characteristics of the genetic regulatory devices, although we will research this phenomenon in our future work.(Fig. D)

So, in order to better reflect the dynamic behaviors of the circuits we tend to use data from mid-log phase during the growth process.

Fig. B The growth curve of the four strains with different promoter- terminator pairs. Error bars represent standard deviation of three biological replicates.


Fig. C The fluorescence/Abs600 in different time. Error bars represent standard deviation of three biological replicates.


Fig.D The fluorescence/Abs600 of strains with different promoter-terminator pairs, after being cultivating for 22 hours. Error bars represent standard deviation of three biological replicates.

Function Verification of promoters and terminators

Through comparing “CC” with “CM”, we can learn that the Fluorescence/Abs600 of “CM”is nearly three times of “CC”, proving that the strength of MINI terminator is higher than that of CYC1 terminator. (Fig. D)(At first we think of measuring this characteristic by comparing yECitrine fluorescence /mStrawberry fluorescence. However, considering that the fluorescence of mStrawberry is too low, we cannot expect an accurate result due to the high error rate. ) We assume that both MINI terminators and CYC1 terminators can effectively stop the transcription, so the mRNA of mStrawberry generated behind these terminators can hardly be detected, neither does the fluorescence of mStrawberry.

What’s more, the Fluorescence/Abs600 of “MM”is also nearly 3-fold compared with “MC”, proving that the strength of MINI promoter is higher than CYC1 promoter.

In addition, when we compared “MM” with “CC” which is the commonly used promoter-terminator pair, we found that the difference is nearly 6-fold. (Fig. D)

From our results, we confirmed that the MINI promoter and MINI terminator do be superior to CYC1 promoter and CYC1 terminator, not only in length but also in strength. (Fig. E)


Fig. E Length and output level of 4 different promoter–terminator combination. Error bars represent standard deviation of three biological replicates

Robustness in different host

In order to verify that the MINI-GRE is able to work with the same rule in a variety of yeast strains and expend the application range of these MINI regulatory devices, we invited other teams to repeat the same experiments in different yeast strains and experimental environment, which can also be an important part of our collaboration.

The time point of the data collection is early stationary phase of yeast growth. The yeast strains we used with Nanjing-China were Saccharomyces cerevisiae EBY100. The yeast strain used in Tianjin was synX, the yeast strain with chemical synthetic chromosome.

From the result of other colleges, we can know that our MINI-GRE can also work in other yeast strains. (Fig. F)


Fig. F The fluorescence/Abs600 of strains with different promoter-terminator pairs in the late from three teams, OUC-China, Tianjin and Nanjing-China(left to right). Error bars represent standard deviation of three biological replicates.

Transcription Level Assay by qPCR

Moreover, we run qPCR towards corresponding protein in order for a further validation of different promoter-terminator combination’s expression on a post-transcriptional level.

The result from qPCR assay shows that at the 22nd hour from setting up culture, the circuits reached the highest expression intensity and the expression level of four circuits is shown below.


Fig. G The relative transcription level of yECitrine and mStrawberry at the 22nd hour from setting up culture. Error bars represent standard deviation of three biological replicates.

However, the transcript level of yECitrine doesn’t matched the fluorescence very well. We infer that it may be caused by the experimental error of the total mRNA concentration and the little mismatch of the primers.

Luckily, we can still learn that the transcript level of mStrawberry is very low, which means the transcriptional read through of both CYC1t and MINI terminator can be overlooked; they can efficiently terminate the transcription, which confirmed the assumption before.

Conclusion

To draw a conclusion, from our experiments, we confirmed the superiority of the MINI-GRE (MINI promoter-MINI terminator pair), which can be summed into three aspects:

(1) Short but strong, which decreases the possibility of undesired homologous reorganization and provide significant output strength compared with commonly used promoter-terminator pair.

(2) Versatile,which can work in different yeast strains and provide robust function for extensive application.

(3) Well-modularited, has good modularity because of the low transcriptional read through efficiency from minimal terminator, which is an important characteristic in synthetic biology.


See more details in our proof page



Contact Us : oucigem@163.com  |  ©2017 OUC IGEM.All Rights Reserved.  |  Based On Bootstrap