Line 43: | Line 43: | ||
\[ \ce{QH_2 ->[\text{UqO}] 2H^+ + Q} \] | \[ \ce{QH_2 ->[\text{UqO}] 2H^+ + Q} \] | ||
− | With the new model containing 1555 reactions and 1559 metabolites (hydroxylamine, Q and QH2 added), the optimal biomass flux of the modified model was found to be \( \boxed{228.6980 (\text{g dry weight}\cdot\text{h})^{-1}} \). </p0> | + | With the new model containing 1555 reactions and 1559 metabolites (hydroxylamine, Q and QH2 added), the optimal biomass flux of the modified model was found to be \( \boxed{228.6980~(\text{g dry weight}\cdot\text{h})^{-1}} \). </p0> |
<h2> Results and Discussion</h2> | <h2> Results and Discussion</h2> |
Revision as of 12:38, 10 August 2017
Metabolic Modeling
Results and Discussion
References
[1] Feist, Adam M., and Bernhard O. Palsson. “The Biomass Objective Function.” Current opinion in microbiology 13.3 (2010): 344–349. PMC. Web. 28 July 2017.
[2] Cuevas, Daniel A. et al. “From DNA to FBA: How to Build Your Own Genome-Scale Metabolic Model.” Frontiers in Microbiology 7 (2016): 907. PMC. Web. 27 July 2017.
[3] Henry, C.S., DeJongh, M., Best, A.B., Frybarger, P.M., Linsay, B., and R.L. Stevens. High-throughput Generation and Optimization of Genome-scale Metabolic Models. Nature Biotechnology, (2010).
[4] COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
[5] Mackinac: A bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models.
[?] MLA Adadi, Roi et al. “Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters.” Ed. Nathan D. Price. PLoS Computational Biology 8.7 (2012): e1002575. PMC. Web. 31 July 2017.
[?} Molenaar, Douwe et al. “Shifts in Growth Strategies Reflect Tradeoffs in Cellular Economics.” Molecular Systems Biology 5 (2009): 323. PMC. Web. 31 July 2017.