Difference between revisions of "Team:UNOTT/Design1"

Line 87: Line 87:
 
<p>
 
<p>
 
<div class="column full_size">
 
<div class="column full_size">
<p>Although our project is applied in the idea of Key. coli, we are actually looking at creating a general system for creating combinations of metabolites and reporters. We knew that we wanted to design a method where an expandable range of products can be expressed at various levels in order to create a large amount of combinations with randomness coming from the assortment of these promoters to different reporters.
+
<p>The idea how to make bacteria which could be used as a security system evolved over several weeks. One of the first ideas how it could be achieved was the use of transposons. Transposable elements are DNA fragments that can change its position within a genome. This creates mutations resulting in different levels/suppression of expression of certain genes. The use of transposons would yield bacteria with various phenotypes, which could be used in Key. coli security system. A target site-specific Tn7 transposon could be used for this purpose. This bacterial mobile DNA segment inserts at high-frequency into a single specific site, called attTn7 in E. coli. However, further research revealed several disadvantages of this idea. The mechanisms of Tn7 recombination are complicated are requiring large number of proteins to work. Although we thought this would be interesting to test, we came across difficulties with sourcing the TsnD subunit of the Tn7 transposon. As expression and purification of this subunit was not realistic within the timeframe we had so we decided a new method would be needed.
 +
The next idea to obtain different phenotypes of bacteria was the use of RNA interference. In this process RNA molecules inhibit gene expression. It is possible thanks to siRNA molecules which target specific mRNA strands. After that protein complex is formed and it breaks down mRNA preventing its translation into protein. An extensive literature search revealed that the CRISPR interference system seems to be more reliable and predictable than RNAi so we decided to use it.</p>
 +
<p>The main difference between CRISPRi and RNAi is the level on which they control protein expression. RNAi regulates this on the translational level by interfering with mRNA and CRISPRi influences gene expression primarily at the transcriptional level. </p>
 +
<p>CRISPRi allows sequence-specific control of gene expression. This method utilizes CRISPR pathway and catalytically inactive Cas9 (dCas9) protein, as well as single guide RNA (sgRNA), which are specific to chosen DNA regions. We came up with an idea that a variety of reporters within a plasmid could be under the control of promoters which can be targeted by guide RNAs. dCas9 is a nuclease-deficient enzyme that uses the RNA-guided DNA binding of Cas9 but represses expression by interfering with RNA polymerase binding instead of cutting the DNA. The complex consisting of dCas9 and sgRNA binds to complementary DNA and represses the expression of target genes by blocking the elongation by RNA polymerase. By linking gRNA targeted promoters up to the genes for various reporters we can control the level of expression of these reporters by providing a targeting or non-targeting gRNA to give an ON/OFF switch.  
 
</p>
 
</p>
 
<p>
 
Initially, we thought of the idea of using transposons to shuffle different strength promoters to assort them randomly to various reporters to give various levels of products. EXPLAIN IDEA HERE. Although we thought this would be really interesting to test, we came accross difficulties with sourcing the TsnD subunit of the Tn7 transposon. As expression and purification of this subunit was not realistic within the timeframe we had so we decided a new method would be needed.
 
</p>
 
 
<p> Next we looked at using RNAi or CRISPRi. After a literature search, CRISPRi seemed to be more reliable and predictable than RNAi so we decided to use it. We came up with an idea that a variety of reporters within a plasmid could be under the control of promoters which can be targeted by guide RNAs. CRISPR interference (CRISPRi) uses dCas9 which is a nuclease-deficient enzyme that uses the RNA-guided DNA binding of Cas9 but represses expression by interfering with RNA polymerase binding instead of cutting the DNA. By linking gRNA targeted promoters up to the genes for various reporters we can control the level of expression of these reporters by providing a targeting or non-targeting gRNA to give an ON/OFF switch.
 
 
<h4 style="text-align: center;"><span style="color: #D74214;"><u>Proof of concept</span></u></h4>
 
<p style="text-align: center;"><span style="color: #D74214;">___________________________</span></p>
 
<p>Initially we will construct a promoter-gRNA library, then 3 of these promoters to a reporter and test the effect of the corresponding gRNA on repression levels. In further work, we have designed an assembly method where a pool of promoters could be used so that the promoter used would be random.
 
</p>
 
<p> Each individual Promoter-Reporter-Terminator brick contains interchangable parts. The three parts are linked together with Bsa1 sites so that there is no preference for any part when ligating together. This allows randomness to be added later. This method is used also for the construction of Promoter-sgRNA-Terminator bricks so that this could be randomised later on. The bricks are then flanked by a prefix and suffix, and these are flanked by restriction sites ABCD on either end. Digestion of bricks with A+B, B+C, and C+D allows any brick to be placed in any position within the plasmid but it would be pre-determined. This means that the no one promoter-reporter-terminator brick would be limited to one specific place in the plasmid, which allows another level of randomness in assembly as we would not know which reporter was being placed where, which could also affect expression levels.</p>
 
<p> We are creating a promoter library of the RFP constructs alone, to measure each promoters expression levels of fluorescent proteins. We are also creating a random construct through the methods proposed above.
 
<p style="text-align: center;"><img src="https://static.igem.org/mediawiki/2017/8/85/UNOTT2017-rfp.jpg" alt="" width="486" height="648" /></p>
 
 
<h4 style="text-align: center;"><span style="color: #D74214;"> <u>Future Work</span></u></h4>
 
<p style="text-align: center;"><span style="color: #D74214;">___________________________</span></p>
 
<p>We can think of a few ways by which we could expand the possible combinations for our system:<p>
 
 
<p>Introducing more possible reporters/products into the bricks</p>
 
<p>Characterising more and more promoter-gRNA combinations</p>
 
<p>Using gRNAs with single point mutations in the seed region which could give different levels of repression</p>
 
  
 
</ul>
 
</ul>

Revision as of 07:59, 7 October 2017

DESIGN PROCESS

The idea how to make bacteria which could be used as a security system evolved over several weeks. One of the first ideas how it could be achieved was the use of transposons. Transposable elements are DNA fragments that can change its position within a genome. This creates mutations resulting in different levels/suppression of expression of certain genes. The use of transposons would yield bacteria with various phenotypes, which could be used in Key. coli security system. A target site-specific Tn7 transposon could be used for this purpose. This bacterial mobile DNA segment inserts at high-frequency into a single specific site, called attTn7 in E. coli. However, further research revealed several disadvantages of this idea. The mechanisms of Tn7 recombination are complicated are requiring large number of proteins to work. Although we thought this would be interesting to test, we came across difficulties with sourcing the TsnD subunit of the Tn7 transposon. As expression and purification of this subunit was not realistic within the timeframe we had so we decided a new method would be needed. The next idea to obtain different phenotypes of bacteria was the use of RNA interference. In this process RNA molecules inhibit gene expression. It is possible thanks to siRNA molecules which target specific mRNA strands. After that protein complex is formed and it breaks down mRNA preventing its translation into protein. An extensive literature search revealed that the CRISPR interference system seems to be more reliable and predictable than RNAi so we decided to use it.

The main difference between CRISPRi and RNAi is the level on which they control protein expression. RNAi regulates this on the translational level by interfering with mRNA and CRISPRi influences gene expression primarily at the transcriptional level.

CRISPRi allows sequence-specific control of gene expression. This method utilizes CRISPR pathway and catalytically inactive Cas9 (dCas9) protein, as well as single guide RNA (sgRNA), which are specific to chosen DNA regions. We came up with an idea that a variety of reporters within a plasmid could be under the control of promoters which can be targeted by guide RNAs. dCas9 is a nuclease-deficient enzyme that uses the RNA-guided DNA binding of Cas9 but represses expression by interfering with RNA polymerase binding instead of cutting the DNA. The complex consisting of dCas9 and sgRNA binds to complementary DNA and represses the expression of target genes by blocking the elongation by RNA polymerase. By linking gRNA targeted promoters up to the genes for various reporters we can control the level of expression of these reporters by providing a targeting or non-targeting gRNA to give an ON/OFF switch.