Figure (1): Results of the analysis of PtNTT2 using Phobius.
The 30 first amino acids are clearly recognized as a signal peptide. Ten transmembrane domains are predicted.
Difference between revisions of "Team:Bielefeld-CeBiTec/Results/unnatural base pair/uptake and biosynthesis"
Line 68: | Line 68: | ||
</div> | </div> | ||
<i>E. coli</i> BL21(DE3) without any plasmid shows the best growth, with the highest specific growth rate and the highest final OD<sub>600</sub> of 5.178 ± 0.046. The second negative control, <i>E. coli</i> BL21(DE3) harboring pSB1C3-PtNTT2 (BBa_K2201004) reached the second highest OD<sub>600</sub> with 4.638 ± 0.029. Of the functional<i>Pt</i>NTT2 variants, strains harboring pSB1C3-PlacUV5-PtNTT2(66-575) (BBa_K2201001) and pSB1C3-PlacUV5-pelB-SP-PtNTT2 (BBa_K2201006) reached the highest ODs with 4.397 ± 0.062 and 4.171 ± 0.051, respectively. <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) (BBa_K2201005) showed similar growth to the two previous strains during the lag phase and early exponential phase, but reaching a lower OD<sub>600</sub> of 3.802 ± 0.135. <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2 (BBa_K2201000) and <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 (BBa_K2201007) grew significantly weaker compared to all previous strains, with a lag phase nearly four hours long and final ODs of 2.499 ± 0.134 and 2.735 ± 0.150, respectively. The difference in growth between the two negative controls can be explained by the metabolic burden caused by plasmid replication and expression of the chloramphenicol resistance. Therefore, <i>E. coli</i> BL21(DE3) pSB1C3-PtNTT2 is the more accurate control, since all samples contain the same plasmid backbone and were also grown in LB media supplemented with chloramphenicol. The difference in growth between strains expressing the native, full length transporter and the truncated version<i>Pt</i>NTT2(66-575), observed by Zhang et al. 2017, could also be shown. This negative effect might be associated with the native signal peptide of<i>Pt</i>NTT2, which <i>E. coli</i> might not be able to process correctly. Another explanation for the weak growth could be that the native transporter variant has a higher activity compared to the other variants. If the activity is too high, this might lead to a toxic effect and to the observed weak growth. | <i>E. coli</i> BL21(DE3) without any plasmid shows the best growth, with the highest specific growth rate and the highest final OD<sub>600</sub> of 5.178 ± 0.046. The second negative control, <i>E. coli</i> BL21(DE3) harboring pSB1C3-PtNTT2 (BBa_K2201004) reached the second highest OD<sub>600</sub> with 4.638 ± 0.029. Of the functional<i>Pt</i>NTT2 variants, strains harboring pSB1C3-PlacUV5-PtNTT2(66-575) (BBa_K2201001) and pSB1C3-PlacUV5-pelB-SP-PtNTT2 (BBa_K2201006) reached the highest ODs with 4.397 ± 0.062 and 4.171 ± 0.051, respectively. <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) (BBa_K2201005) showed similar growth to the two previous strains during the lag phase and early exponential phase, but reaching a lower OD<sub>600</sub> of 3.802 ± 0.135. <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2 (BBa_K2201000) and <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 (BBa_K2201007) grew significantly weaker compared to all previous strains, with a lag phase nearly four hours long and final ODs of 2.499 ± 0.134 and 2.735 ± 0.150, respectively. The difference in growth between the two negative controls can be explained by the metabolic burden caused by plasmid replication and expression of the chloramphenicol resistance. Therefore, <i>E. coli</i> BL21(DE3) pSB1C3-PtNTT2 is the more accurate control, since all samples contain the same plasmid backbone and were also grown in LB media supplemented with chloramphenicol. The difference in growth between strains expressing the native, full length transporter and the truncated version<i>Pt</i>NTT2(66-575), observed by Zhang et al. 2017, could also be shown. This negative effect might be associated with the native signal peptide of<i>Pt</i>NTT2, which <i>E. coli</i> might not be able to process correctly. Another explanation for the weak growth could be that the native transporter variant has a higher activity compared to the other variants. If the activity is too high, this might lead to a toxic effect and to the observed weak growth. | ||
+ | |||
<p class="figure subtitle"><b>Table (1): Final OD<sub>600</sub> of all cultures. </b><br> The highest OD<sub>600</sub> was reached by the wildtype <i>E. coli</i> BL21(DE3), the lowest by <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2.</p> | <p class="figure subtitle"><b>Table (1): Final OD<sub>600</sub> of all cultures. </b><br> The highest OD<sub>600</sub> was reached by the wildtype <i>E. coli</i> BL21(DE3), the lowest by <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2.</p> | ||
− | <table> | + | <table style="margin: auto"> |
<thead> | <thead> | ||
<tr> | <tr> | ||
Line 128: | Line 129: | ||
</tbody> | </tbody> | ||
</table> | </table> | ||
+ | |||
<br> | <br> | ||
To determine the maximum specific growth rate (µmax), the natural logarithm of the OD<sub>600</sub> values was plotted against the cultivation time. The slope of the linear regression through the exponential phase gives µmax. The graphical determination of µmax for the shake flask cultivation is shown in figure 4. | To determine the maximum specific growth rate (µmax), the natural logarithm of the OD<sub>600</sub> values was plotted against the cultivation time. The slope of the linear regression through the exponential phase gives µmax. The graphical determination of µmax for the shake flask cultivation is shown in figure 4. | ||
Line 143: | Line 145: | ||
<p class="figure subtitle"><b>Table (2): Maximum specific growth rates and minimum doubling times for all cultures. </b><br> </p> | <p class="figure subtitle"><b>Table (2): Maximum specific growth rates and minimum doubling times for all cultures. </b><br> </p> | ||
− | <table> | + | <table style="margin: auto"> |
<thead> | <thead> | ||
<tr> | <tr> | ||
Line 231: | Line 233: | ||
<p class="figure subtitle"><b>Table (3): Final OD<sub>600</sub> of all cultures.</b><br> The highest OD<sub>600</sub> was reached by the wildtype <i>E. coli</i> BL21(DE3) with 5,487 ± 0.038, the lowest by <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2 with 1.623 ± 0.481.</p> | <p class="figure subtitle"><b>Table (3): Final OD<sub>600</sub> of all cultures.</b><br> The highest OD<sub>600</sub> was reached by the wildtype <i>E. coli</i> BL21(DE3) with 5,487 ± 0.038, the lowest by <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2 with 1.623 ± 0.481.</p> | ||
− | <table> | + | <table style="margin: auto"> |
<thead> | <thead> | ||
<tr> | <tr> | ||
Line 296: | Line 298: | ||
</div> | </div> | ||
+ | All cultures show extended doubling times when compared to the shake flask cultivations. This is not surprising, since the oxygen transfer is much better in shake flasks compared to well plates. Nonetheless, similar final OD<sub>600</sub> values were reached in the micro cultivations. Furthermore, the same differences in growth between the different strains can be observed, with <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-PtNTT2 and <i>E. coli</i> BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 growing the weakest. | ||
+ | |||
<p class="figure subtitle"><b>Table (4): Maximum specific growth rate and minimum doubling time for all cultures cultivated in 12 well plates. </b><br> </p> | <p class="figure subtitle"><b>Table (4): Maximum specific growth rate and minimum doubling time for all cultures cultivated in 12 well plates. </b><br> </p> | ||
− | <table> | + | <table style="margin: auto"> |
<thead> | <thead> | ||
<tr> | <tr> | ||
Line 363: | Line 367: | ||
</table> | </table> | ||
<br> | <br> | ||
− | + | ||
</article> | </article> |
Revision as of 16:38, 28 October 2017
Computational Analysis of PtNTT2
Plasmid Design
Figure (2): Schematic overview of the design of the different transporter variants.
The lacUV5 promotor was used together with a strong RBS (BBa_B0034) for all parts. All variants except for pSB1C3-PtNTT2 were also tagged with GFP (BBa_E0040). cMyc was used as a linker (based on BBa_K2082221).
Cultivations of the Different PtNTT2 Variants
Figure (3): Shake flask cultivation of all PtNTT2 variants.
E. coli BL21(DE3) and E. coli BL21(DE3) pSB1C3-PtNTT2, not expressing PtNTT2, were used as negative controls. Two biological replicates of each strain were cultivated and three technical replicates taken for each measurement. A clear difference in the growth rates can be observed, with E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 and E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 showing the weakest growth. Both strains also show the longest lag phase, which is nearly twice as long as the lag phase of E. coli BL21(DE3). E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) and E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2 show the best growth of all PtNTT2 variants, reaching the highest OD600.
Table (1): Final OD600 of all cultures.
The highest OD600 was reached by the wildtype E. coli BL21(DE3), the lowest by E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2.
Strain | Final OD600 [-] | |
---|---|---|
E. coli BL21(DE3) | 5.178 ± 0.046 | |
E. coli BL21(DE3) pSB1C3-PtNTT2 | 4.638 ± 0.029 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 | 2.499 ± 0.134 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) | 4.397 ± 0.062 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) | 3.802 ± 0.135 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2 | 4.171 ± 0.051 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 | 2.735 ± 0.150 |
To determine the maximum specific growth rate (µmax), the natural logarithm of the OD600 values was plotted against the cultivation time. The slope of the linear regression through the exponential phase gives µmax. The graphical determination of µmax for the shake flask cultivation is shown in figure 4.
Figure (4): Graphical determination of µmax.
The highest specific growth rate was determined for each culture by plotting the natural logarithm of OD600 against the cultivation time. The slope of the linear regression through the exponential phase gives µmax.
The maximum specific growth rates and minimal doubling times are show in table (2) for all cultures.
Table (2): Maximum specific growth rates and minimum doubling times for all cultures.
Strain | µmax [h-1] | td [h] | |
---|---|---|---|
E. coli BL21(DE3) | 1.201 ± 0.070 | 0.577 ± 0.058 | |
E. coli BL21(DE3) pSB1C3-PtNTT2 | 1.212 ± 0.029 | 0.572 ± 0.024 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 | 0.978 ± 0.033 | 0.709 ± 0.034 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) | 1.194 ± 0.026 | 0.581 ± 0.022 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) | 1.143 ± 0.045 | 0.606 ± 0.039 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2 | 1.189 ± 0.028 | 0.583 ± 0.024 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 | 0.946 ± 0.030 | 0.733 ± 0.032 |
These results clearly show that expression ofPtNTT2 leads to a reduced final cell density and slower growth. Furthermore, the different variants ofPtNTT2 differ highly, indicating that some variants ofPtNTT2 negatively affect the growth rate and final cell density.
Microcultivations of the Different PtNTT2 Variants
Figure (5): Microcultivation of allPtNTT2 variants
E. coli BL21(DE3) and E. coli BL21(DE3) pSB1C3-PtNTT2 (BBa_K2201004) were again used as negative controls. The same growth pattern as in the shake flask cultivation can be observed, with E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2, E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) reaching the highest ODs, followed by E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575), E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 and E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2.
Table (3): Final OD600 of all cultures.
The highest OD600 was reached by the wildtype E. coli BL21(DE3) with 5,487 ± 0.038, the lowest by E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 with 1.623 ± 0.481.
Strain | Final OD600 [-] | |
---|---|---|
E. coli BL21(DE3) | 5.487 ± 0.038 | |
E. coli BL21(DE3) pSB1C3-PtNTT2 | 4.337 ± 0.010 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 | 1.623 ± 0.481 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) | 4.035 ± 0.051 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) | 3.865 ± 0.008 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2 | 4.110 ± 0.005 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 | 2.280 ± 0.337 |
Like for the shake flask cultivation, µmax was determined graphically (figure 5). Bases on the obtained values, the minimum doubling time was calculated. The results are summarized in table (4).
Figure (5): Graphical determination of the maximum specific growth rate µmax for the microcultivations.
Table (4): Maximum specific growth rate and minimum doubling time for all cultures cultivated in 12 well plates.
Strain | µmax [h-1] | td [h] | |
---|---|---|---|
E. coli BL21(DE3) | 1.059 ± 0.143 | 0.655 ± 0.135 | |
E. coli BL21(DE3) pSB1C3-PtNTT2 | 1.016 ± 0.133 | 0.682 ± 0.131 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2 | 0.829 ± 0.071 | 0.836 ± 0.086 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(66-575) | 1.023 ± 0.105 | 0.678 ± 0.103 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-PtNTT2(31-575) | 1.021 ± 0.096 | 0.679 ± 0.094 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-pelB-SP-PtNTT2 | 1.047 ± 0.097 | 0.662 ± 0.093 | |
E. coli BL21(DE3) pSB1C3-PlacUV5-TAT-SP-PtNTT2 | 0.924 ± 0.113 | 0.750 ± 0.122 |