Difference between revisions of "Team:NTHU Taiwan/Model"

Line 1: Line 1:
 +
{{:Team:NTHU_Taiwan/MenuBar}}
 
<html>
 
<html>
  
Line 10: Line 11:
 
#bodyContent {background-color:#f6f6e3;}
 
#bodyContent {background-color:#f6f6e3;}
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
#bodyContent h1, #bodyContent h2, #bodyContent h3, #bodyContent h4, #bodyContent h5 { margin-bottom: 0px; }
 
/**************************************************************** MENU ***************************************************************/
 
/* Wrapper for the menu */
 
 
.igem_2017_menu_wrapper {
 
border-bottom: 3px solid #c2dac0;
 
background-color:#f6f6e3;
 
font-family:'Open Sans', sans-serif;
 
overflow: hidden;
 
}
 
 
.igem_2017_menu_wrapper a { 
 
float: left;
 
font-size: 1.2em;
 
color: #6c5070;
 
text-align: center;
 
padding: 25px 20px;
 
text-decoration: none;
 
}
 
 
.munu_img img{
 
position: fixed;
 
height: 9%;
 
}
 
 
/* this hides the scrollbar to keep view consistency */
 
.igem_2017_menu_wrappe::-webkit-scrollbar {
 
display: none;
 
}
 
 
.submenu_wrapper {
 
float: left;
 
  overflow: hidden;
 
}
 
 
.submenu_wrapper .menu_button {
 
letter-spacing: 1px;
 
text-transform: uppercase;
 
font-size: 1.2em;
 
border: none;
 
outline: none;
 
color: #6c5070;
 
padding: 25px 20px;
 
background-color: inherit;
 
}
 
 
.igem_2017_menu_wrapper a:hover, .submenu_wrapper:hover .menu_button {
 
color: #DF6A6A;
 
}
 
 
.submenu_button {
 
display: none;
 
position: absolute;
 
background-color: rgba(246, 246, 227, 0.7);
 
min-width: 160px;
 
z-index: 1;
 
}
 
 
.submenu_button a {
 
float: none;
 
color: #6c5070;
 
padding: 8px 16px;
 
text-decoration: none;
 
display: block;
 
text-align: left;
 
}
 
 
.submenu_button a:hover {
 
font-size: 1.3em;
 
 
}
 
 
.submenu_wrapper:hover .submenu_button {
 
display: block;
 
}
 
 
/*menu_wrapper left space*/
 
.igem_2017_menu_wrapper .menu_right_margin {
 
margin-left: 160px;
 
}
 
 
/*menu_wrapper right space*/
 
.igem_2017_menu_wrapper .menu_bottom_padding {
 
width: 100%;
 
height: 30px;
 
float:left;
 
}
 
 
/* styling for the menu button when it is the current page */
 
.current_page {
 
color:#df6a6a !important;
 
}
 
 
/* when the page size is bigger than 800px, this show/hide control is hidden by default */
 
.igem_2017_menu_wrapper #display_menu_control {
 
display:none;
 
text-align:center;
 
}
 
 
 
  
Line 136: Line 39:
  
 
.igem_2017_content_wrapper h1, .igem_2017_content_wrapper h2 .igem_2017_content_wrapper h3, .igem_2017_content_wrapper h4, .igem_2017_content_wrapper h5, .igem_2017_content_wrapper h6 {
 
.igem_2017_content_wrapper h1, .igem_2017_content_wrapper h2 .igem_2017_content_wrapper h3, .igem_2017_content_wrapper h4, .igem_2017_content_wrapper h5, .igem_2017_content_wrapper h6 {
padding: 40px 0px 15px 0px;  
+
padding: 50px 0px 15px 0px;  
 
border-bottom: 0px;  
 
border-bottom: 0px;  
 
color: #2C2C2C;
 
color: #2C2C2C;
Line 143: Line 46:
 
}
 
}
  
#pdf {
+
.igem_2017_content_wrapper .content {
 
width: 950px;
 
width: 950px;
height: 1200px;
 
 
margin: 2em auto;
 
margin: 2em auto;
padding-top: 20px;
 
 
}
 
}
  
#pdf object {
+
.igem_2017_content_wrapper .content p{
 +
color: #2C2C2C;
 +
font-size: 1.4em;
 +
line-height: 1.3em;
 +
padding: 0px 0px;
 +
text-align: justify;
 +
text-justify:inter-ideograph;
 +
}
 +
 
 +
.igem_2017_content_wrapper .content img{
 +
margin: auto;
 
display: block;
 
display: block;
border: solid 2px #2c2c2c;
+
float: center;
 +
padding: 20px 0px 30px 0px;
 
}
 
}
  
/***************************************************** RESPONSIVE STYLING ****************************************************/
+
.column .full_size {
 +
width: 100%;
 +
padding-top: 50px;
 +
}
  
/* IF THE SCREEN IS LESS THAN 1200PX */
+
/* class for a half width column */
@media only screen and (max-width: 1200px) {
+
.column .half_size {
 +
width: 50%;
 +
float: left;
 +
}
  
#content {width:100%; }
+
#pdf {
.igem_2017_menu_wrapper {width:100%; right:0;}
+
width: 950px;
.highlight {padding:10px 0px;}
+
height: 1200px;
.igem_2017_menu_wrapper #display_menu_control { display:none; }
+
margin: 2em auto;
#menu_content { display:block;}
+
padding-top: 20px;
.menu_button.direct_to_page {padding-left: 17px;}
+
+
 
}
 
}
  
/* IF THE SCREEN IS LESS THAN 800PX */
+
#pdf object {
@media only screen and (max-width: 800px) {
+
display: block;
 
+
border: solid 2px #2c2c2c;
.igem_2017_menu_wrapper { width:100%; height: 15%; position:relative; left:0%;}
+
.igem_2017_content_wrapper {width:100%; margin-left:0px;}
+
.column.half_size  {width:100%; }
+
.column.full_size img, .column.half_size img {  width: 100%; padding: 10px 0px;}
+
.highlight {padding:15px 5px;}
+
.igem_2017_menu_wrapper #display_menu_control { display:block; }
+
#menu_content { display:none;}
+
.igem_2017_menu_wrapper .menu_button .expand_collapse_icon { width: 5%; }
+
.menu_bottom_padding {display:none;}
+
.menu_button.direct_to_page { padding-left: 36px; }
+
 
}
 
}
 
 
</style>
 
</style>
  
Line 194: Line 99:
 
</head>
 
</head>
  
<!-- <div class="munu_img">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan">
 
<img src="https://static.igem.org/mediawiki/2017/1/1f/T--NTHU_Taiwan--HOME--logo.png">
 
</a>
 
</div> -->
 
 
<div class="igem_2017_menu_wrapper" >
 
<!-- this div is hidden by default and will only be displayed if the screen size is too small -->
 
<div class="menu_button" id="display_menu_control">
 
MENU 
 
</div>
 
 
 
<div id="menu_content">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan">
 
<div class="menu_button menu_right_margin">
 
HOME
 
</div>
 
</a>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">TEAM</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Team">
 
<div id="Team_page">
 
Team
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Attributions">
 
<div  id="Attributions_page">
 
Attributions
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Collaborations">
 
<div  id="Collaborations_page">
 
Collaborations
 
</div>
 
</a>
 
</div>
 
</div>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">PROJECT</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Description">
 
<div id="Description_page">
 
Description
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Design">
 
<div  id="Design_page">
 
Design
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Contribution">
 
<div  id="Contribution_page">
 
Contribution
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Model">
 
<div  id="Model_page">
 
Model
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Results">
 
<div  id="Results_page">
 
Results
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Demonstrate">
 
<div  id="Demonstrate_page">
 
Demonstrate
 
</div>
 
</a>
 
 
</div>
 
</div>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">WET LAB</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Experiments">
 
<div  id="Experiments_page">
 
Experiments
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Protocol">
 
<div  id="Protocol_page">
 
Protocol
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Notebook">
 
<div  id="Notebook_page">
 
Notebook
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/InterLab">
 
<div  id="InterLab_page">
 
InterLab
 
</div>
 
</a>
 
</div>
 
</div>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">PARTS</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Basic_Part">
 
<div  id="Basic_Part_page">
 
Basic Parts
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Composite_Part">
 
<div  id="Composite_Part_page">
 
Composite Parts
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Part_Collection">
 
<div  id="Part_Collection_page">
 
Part Collection
 
</div>
 
</a>
 
</div>
 
</div>
 
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Safety">
 
<div class="menu_button">
 
SAFETY
 
</div>
 
</a>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">HUMAN PRACTICES</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/HP/Silver">
 
<div id="Silver_page">
 
Silver HP
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/HP/Gold_Integrated">
 
<div  id="Gold_Integrated_page">
 
Integrated and Gold
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Engagement">
 
<div  id="Engagement_page">
 
Public Engagement
 
</div>
 
</a>
 
</div>
 
</div>
 
 
<div class="submenu_wrapper">
 
<button class="menu_button">AWARDS</button>
 
<div class="submenu_button">
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Applied_Design">
 
<div id="Applied_Design_page">
 
Applied Design
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Entrepreneurship">
 
<div  id="Entrepreneurship_page">
 
Integrated Human Practices
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Hardware">
 
<div  id="Hardware_page">
 
Hardware
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Model">
 
<div  id="Model_page">
 
Model
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Software">
 
<div  id="Software_page">
 
Software
 
</div>
 
</a>
 
<a href="https://2017.igem.org/Team:NTHU_Taiwan/Criteria">
 
<div  id="Criteria_page">
 
Criteria
 
</div>
 
</a>
 
 
</div>
 
</div>
 
 
<a href="https://igem.org/2017_Judging_Form?team=NTHU_Taiwan">
 
<div class="menu_button">
 
JUDGING FORM
 
</div>
 
</a>
 
 
</div>
 
 
</div>
 
  
  
Line 397: Line 104:
 
<!-- start of content -->
 
<!-- start of content -->
 
<div class="igem_2017_content_wrapper">
 
<div class="igem_2017_content_wrapper">
<img width="25%" src="https://static.igem.org/mediawiki/2017/e/e2/T--NTHU_Taiwan--Notebook--Top.png">
 
 
<div style="text-align: center">
 
<div style="text-align: center">
 
<h1 style="color:#DF6A6A">Model
 
<h1 style="color:#DF6A6A">Model
Line 404: Line 110:
 
<hr width="20%" />
 
<hr width="20%" />
 
</div>
 
</div>
 +
<div class="content">
  
<style>
+
p{
+
width:1000px;
+
font-size:20px;
+
text-align: justify;
+
text-justify:inter-ideograph;
+
line-height: 30px;
+
}
+
</style>
+
<body>
+
<center>
+
  
  
 +
<h2>
 +
Modelling1: Enzyme kinetics
 +
</h2>
  
<h1>
+
<p>
Modelling1: Enzyme kinetics  
+
Theory and derivation of enzyme kinetics :
</h1>
+
</p>
  
<p>
+
<p>
Theory and derivation of enzyme kinetics :
+
We simplified our enzyme-EDCs system as the reaction with the process of the first and second order reactions:
</p>
+
</p>
  
<p>
 
We simplified our enzyme-EDCs system as the reaction with the process of the first and second order reactions:
 
</p>
 
<br>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/f/f4/T--NTHU_Taiwan--Parts--m1.png">
+
<img src="https://static.igem.org/mediawiki/2017/f/f4/T--NTHU_Taiwan--Parts--m1.png">
</p>
+
</p>
  
  
<p>
+
<p>
The initial collision of E and S is a bimolecular reaction with the second-order rate
+
The initial collision of E and S is a bimolecular reaction with the second-order rate
constant k1. The ES complex can then undergo one of two possible reactions: k2 is the first-order rate constant for the conversion of ES to E and P, and k-1 is the first-order rate constant for the conversion of ES back to E and S.We assume that the formation of product from ES (the step described by k2) does not occur in reverse.
+
constant k1. The ES complex can then undergo one of two possible reactions: k2 is the first-order rate constant for the conversion of ES to E and P, and k-1 is the first-order rate constant for the conversion of ES back to E and S.We assume that the formation of product from ES (the step described by k2) does not occur in reverse.
</p>
+
</p>
<br>
+
  
<p>
 
The rate equation for product formation is:
 
</p>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/2/2a/M2.png">
+
The rate equation for product formation is:
</p>
+
</p>
  
<p>
+
<p>
However, measuring [ES] is more difficult because the concentration of the enzyme-substrate complex depends on its rate of formation from E and S and its rate of decomposition to E + S and E + P:
+
<img src="https://static.igem.org/mediawiki/2017/2/2a/M2.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/a/a6/M3.png">
+
However, measuring [ES] is more difficult because the concentration of the enzyme-substrate complex depends on its rate of formation from E and S and its rate of decomposition to E + S and E + P:
</p>
+
</p>
  
<p>
+
<p>
To simplify our analysis, we choose experimental conditions such that the substrate
+
<img src="https://static.igem.org/mediawiki/2017/a/a6/M3.png">
concentration is much greater than the enzyme concentration and ES remains constant until nearly all the substrate has been converted to product.
+
</p>
</p>
+
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/d/db/M4.png">
+
To simplify our analysis, we choose experimental conditions such that the substrate
</p>
+
concentration is much greater than the enzyme concentration and ES remains constant until nearly all the substrate has been converted to product.
 +
</p>
  
<p>
+
<p>
According to the steady-state assumption, the rate of ES formation must therefore
+
<img src="https://static.igem.org/mediawiki/2017/d/db/M4.png">
balance the rate of ES consumption:
+
</p>
</p>
+
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/7/74/M5.png">
+
According to the steady-state assumption, the rate of ES formation must therefore
</p>
+
balance the rate of ES consumption:
 +
</p>
  
 +
<p>
 +
<img src="https://static.igem.org/mediawiki/2017/7/74/M5.png">
 +
</p>
  
<p>
 
The total enzyme concentration, [E]T, is usually known:
 
</p>
 
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/c/cc/M6.png">
+
The total enzyme concentration, [E]T, is usually known:
</p>
+
</p>
  
<p>
+
<p>
This expression for [E] can be substituted into the rate equation to give:
+
<img src="https://static.igem.org/mediawiki/2017/c/cc/M6.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/b/b8/M7.png">
+
This expression for [E] can be substituted into the rate equation to give:
</p>
+
</p>
  
<p>
+
<p>
Rearranging (by dividing both sides by [ES] and k1) gives an expression in which all
+
<img src="https://static.igem.org/mediawiki/2017/b/b8/M7.png">
three rate constants are together:
+
</p>
</p>
+
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/5/55/M8.png">
+
Rearranging (by dividing both sides by [ES] and k1) gives an expression in which all
</p>
+
three rate constants are together:
 +
</p>
  
<p>
+
<p>
We defined KM and rearranged the equation:
+
<img src="https://static.igem.org/mediawiki/2017/5/55/M8.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/5/58/M9.png">
+
We defined KM and rearranged the equation:
</p>
+
</p>
  
<p>
+
<p>
We did some compute process for the equation and give:
+
<img src="https://static.igem.org/mediawiki/2017/5/58/M9.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/b/b5/M10.png">
+
We did some compute process for the equation and give:
</p>
+
</p>
  
<p>
+
<p>
Solving for [ES],
+
<img src="https://static.igem.org/mediawiki/2017/b/b5/M10.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/5/5b/M11.png">
+
Solving for [ES],
</p>
+
</p>
  
<p>
+
<p>
Finally, we can express the reaction velocity as:
+
<img src="https://static.igem.org/mediawiki/2017/5/5b/M11.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/3/3a/M12.png">
+
Finally, we can express the reaction velocity as:
</p>
+
</p>
  
<p>
+
<p>
The maximum reaction velocity, Vmax, can be expressed as:
+
<img src="https://static.igem.org/mediawiki/2017/3/3a/M12.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/6/6c/M13.png">
+
The maximum reaction velocity, Vmax, can be expressed as:
</p>
+
</p>
  
<p>
+
<p>
And then we can get the equation,
+
<img src="https://static.igem.org/mediawiki/2017/6/6c/M13.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/b/b4/M14.png">
+
And then we can get the equation,
</p>
+
</p>
  
<p>
+
<p>
In order to estimate the degradation capacity of the filter, we calculated horseradish peroxidase’s ability of degradation based on the equation of Michaelis-Menten kinetics :
+
<img src="https://static.igem.org/mediawiki/2017/b/b4/M14.png">
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/b/b4/M14.png">
+
In order to estimate the degradation capacity of the filter, we calculated horseradish peroxidase’s ability of degradation based on the equation of Michaelis-Menten kinetics :
</p>
+
</p>
  
<p>
+
<p>
<b>
+
<img src="https://static.igem.org/mediawiki/2017/b/b4/M14.png">
The degradation rate under different EDCs concentration
+
</p>
</b>
+
</p>
+
<br>
+
  
<p>
+
<p>
We used several parameters according to the paper we found to calculate the initial velocity of different concentrations of BPA and NP. Also, their concentrations at different time after starting degradation.
+
</p>
+
  
<p>
+
The degradation rate under different EDCs concentration
<font size=2>
+
NP:
+
</p>
+
  
<p>
+
</p>
<font size=2>
+
[H2O2]=10^(-5) M
+
</p>
+
  
<p>
 
<font size=2>
 
Km=10.1*10^(-6) M
 
</p>
 
  
<p>
+
<p>
<font size=2>
+
We used several parameters according to the paper we found to calculate the initial velocity of different concentrations of BPA and NP. Also, their concentrations at different time after starting degradation.
Vmax=0.056*10^(-6) M/s
+
</p>
</p>
+
  
<p>
+
<p><center><font size=2>NP:</font></center></p>
<font size=2>
+
S=9.1*10^(-10)~9.1*10^(-6) M
+
</p>
+
<br>
+
  
<p>
+
<p><center><font size=2>[H2O2]=10^(-5) M</font></center></p>
<font size=2>
+
BPA:
+
</p>
+
  
<p>
+
<p><center><font size=2> Km=10.1*10^(-6) M</font></center></p>
<font size=2>
+
[H2O2]=0.02*10^(-3) M
+
<p><center><font size=2> Vmax=0.056*10^(-6) M/s</font></center></p>
</p>
+
  
<p>
+
<p><center><font size=2> S=9.1*10^(-10)~9.1*10^(-6) M</font></center></p>
<font size=2>
+
Km=6*10^(-6) M
+
</p>
+
  
<p>
+
<p><center><font size=2> BPA:</font></center></p>
<font size=2>
+
Vmax=2.22*10^(-9) M/s
+
</p>
+
  
<p>
+
<p><center><font size=2> [H2O2]=0.02*10^(-3) M</font></center></p>
<font size=2>
+
S=8.77*10^(-10)~8.77*10^(-6) M
+
</p>
+
<br>
+
  
<p>
+
<p><center><font size=2> Km=6*10^(-6) M</font></center></p>
The results are shown in the following figures(Figure 1-4) :
+
</p>
+
  
 +
<p><center><font size=2>Vmax=2.22*10^(-9) M/s</font></center></p>
  
<p>
+
<p><center><font size=2> S=8.77*10^(-10)~8.77*10^(-6) M</font></center></p>
<img width="90%"src="https://static.igem.org/mediawiki/parts/b/b0/T--NTHU_Taiwan--Model--speed_degradation_6_EDC_concentration.png">
+
</p>
+
  
 +
<p>
 +
The results are shown in the following figures(Figure 1-4) :
 +
</p>
  
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/parts/b/b0/T--NTHU_Taiwan--Model--speed_degradation_6_EDC_concentration.png">
<font size=2>
+
</p>
Figure 1. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-6) mg/L
+
</font>
+
</center>
+
</p>
+
  
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/53/T--NTHU_Taiwan--Model--speed_degradation_7_EDC_concentration.png">
+
Figure 1. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-6) mg/L
</p>
+
</font></center></p>
  
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/53/T--NTHU_Taiwan--Model--speed_degradation_7_EDC_concentration.png">
<font size=2>
+
</p>
Figure 2. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-7) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
 
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/09/T--NTHU_Taiwan--Model--speed_degradation_8_EDC_concentration.png">
 
</p>
 
  
<p>
+
<p><center><font size=2>
<center>
+
Figure 2. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-7) mg/L
<font size=2>
+
</font></center></p>
Figure 3. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-8) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/57/T--NTHU_Taiwan--Model--speed_degradation_9_EDC_concentration.png">
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/09/T--NTHU_Taiwan--Model--speed_degradation_8_EDC_concentration.png">
</p>
+
</p>
  
<p>
+
<p><center><font size=2>
<center>
+
Figure 3. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-8) mg/L
<font size=2>
+
</font></center></p>
Figure 4. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-9) mg/L
+
</font>
+
</center>
+
</p>
+
  
 +
<p>
 +
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/57/T--NTHU_Taiwan--Model--speed_degradation_9_EDC_concentration.png">
 +
</p>
  
<p>
+
<p><center><font size=2>
From the results of the enzyme kinetics, we can find that when the concentration of EDCs increases, the degradation rate increases dramatically. As a result, our activated carbon in the system of our filter can help HRP to degrade EDCs in the more efficient way since its outstanding ability to capture EDCs in the water and accumulate more EDCs around HRP.
+
Figure 4. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-9) mg/L
</p>
+
</font></center></p>
  
<p>
 
<b>
 
To prove the accumulative ability of activated carbon
 
</b>
 
</p>
 
<br>
 
  
<p>
+
<p>
To prove that our activated carbon can effectively accumulate our EDCs, we compared the time duration for 50%,75%, and 95% degradation between different concentrations of EDCs in the unsaturated activated carbon and those in the saturated activated carbon. (Since we believed that if our activated carbon can effectively accumulate EDCs, the EDCs solution should we saturated)
+
From the results of the enzyme kinetics, we can find that when the concentration of EDCs increases, the degradation rate increases dramatically. As a result, our activated carbon in the system of our filter can help HRP to degrade EDCs in the more efficient way since its outstanding ability to capture EDCs in the water and accumulate more EDCs around HRP.
</p>
+
</p>
  
<p>
+
<p>
We fixed the EDCs solution at the concentrations of 10^(-6) M,10^(-7) M,10^(-8) M, and 10^(-9) M. (not in the activated carbon)The results are shown in the following figures(Figure 5-19) :
+
To prove the accumulative ability of activated carbon
</p>
+
</p>
  
<p>
 
<img width="90%"src="https://static.igem.org/mediawiki/2017/b/bd/T--NTHU_Taiwan--Model--50_degradation_6_EDC_concentration.png">
 
</p>
 
  
<p>
+
<p>
<center>
+
To prove that our activated carbon can effectively accumulate our EDCs, we compared the time duration for 50%,75%, and 95% degradation between different concentrations of EDCs in the unsaturated activated carbon and those in the saturated activated carbon. (Since we believed that if our activated carbon can effectively accumulate EDCs, the EDCs solution should we saturated)  
<font size=2>
+
</p>
Figure 5. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d5/T--NTHU_Taiwan--Model--50_degradation_7_EDC_concentration.png">
+
We fixed the EDCs solution at the concentrations of 10^(-6) M,10^(-7) M,10^(-8) M, and 10^(-9) M. (not in the activated carbon)The results are shown in the following figures(Figure 5-19) :
</p>
+
</p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/b/bd/T--NTHU_Taiwan--Model--50_degradation_6_EDC_concentration.png">
<font size=2>
+
</p>
Figure 6. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d0/T--NTHU_Taiwan--Model--50_degradation_8_EDC_concentration.png">
+
Figure 5. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d5/T--NTHU_Taiwan--Model--50_degradation_7_EDC_concentration.png">
<font size=2>
+
</p>
Figure 7. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/e/e6/T--NTHU_Taiwan--Model--50_degradation_9_EDC_concentration.png">
+
Figure 6. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d0/T--NTHU_Taiwan--Model--50_degradation_8_EDC_concentration.png">
<font size=2>
+
</p>
Figure 8. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/6/6e/T--NTHU_Taiwan--Model--T_of_50_Degradation_Rate_1_EDC_saturation_point.png">
+
Figure 7. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/e/e6/T--NTHU_Taiwan--Model--50_degradation_9_EDC_concentration.png">
<font size=2>
+
</p>
Figure 9. time duration for 50%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/7/76/T--NTHU_Taiwan--Model--75_degradation_6_EDC_concentration.png">
+
Figure 8. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/6/6e/T--NTHU_Taiwan--Model--T_of_50_Degradation_Rate_1_EDC_saturation_point.png">
<font size=2>
+
</p>
Figure 10. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/11/T--NTHU_Taiwan--Model--75_degradation_7_EDC_concentration.png">
+
Figure 9. time duration for 50%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/7/76/T--NTHU_Taiwan--Model--75_degradation_6_EDC_concentration.png">
<font size=2>
+
</p>
Figure 11. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/59/T--NTHU_Taiwan--Model--75_degradation_8_EDC_concentration.png">
+
Figure 10. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/11/T--NTHU_Taiwan--Model--75_degradation_7_EDC_concentration.png">
<font size=2>
+
</p>
Figure 12. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/16/T--NTHU_Taiwan--Model--75_degradation_9_EDC_concentration.png">
+
Figure 11. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/5/59/T--NTHU_Taiwan--Model--75_degradation_8_EDC_concentration.png">
<font size=2>
+
</p>
Figure 13. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/9/95/T--NTHU_Taiwan--Model--T_of_75_Degradation_Rate_1_EDC_saturation_point.png">
+
Figure 12. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/16/T--NTHU_Taiwan--Model--75_degradation_9_EDC_concentration.png">
<font size=2>
+
</p>
Figure 14. time duration for 75%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/06/T--NTHU_Taiwan--Model--95_degradation_6_EDC_concentration.png">
+
Figure 13. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/9/95/T--NTHU_Taiwan--Model--T_of_75_Degradation_Rate_1_EDC_saturation_point.png">
<font size=2>
+
</p>
Figure 15. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/0f/T--NTHU_Taiwan--Model--95_degradation_7_EDC_concentration.png">
+
Figure 14. time duration for 75%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/06/T--NTHU_Taiwan--Model--95_degradation_6_EDC_concentration.png">
<font size=2>
+
</p>
Figure 16. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/6/6b/T--NTHU_Taiwan--Model--95_degradation_8_EDC_concentration.png">
+
Figure 15. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/0/0f/T--NTHU_Taiwan--Model--95_degradation_7_EDC_concentration.png">
<font size=2>
+
</p>
Figure 17. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/7/7d/T--NTHU_Taiwan--Model--95_degradation_9_EDC_concentration.png">
+
Figure 16. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/6/6b/T--NTHU_Taiwan--Model--95_degradation_8_EDC_concentration.png">
<font size=2>
+
</p>
Figure 18. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/da/T--NTHU_Taiwan--Model--T_of_95_Degradation_Rate_1_EDC_saturation_point.png">
+
Figure 17. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M
</p>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/7/7d/T--NTHU_Taiwan--Model--95_degradation_9_EDC_concentration.png">
<font size=2>
+
</p>
Figure 19. time duration for 95%degradation vs EDCs concentration  under the saturated activated carbon with the concentration of 10^(-6) M
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
As we can see in the results, the scale of time duration for degrading the unsaturated EDCs solution can up to 10^(15) sec, however, the time duration for degrading the saturated EDCs solution are only 10^(10)sec. This proves that our filter can effectively accumulate EDCs to let our enzyme degrade much more faster.
+
Figure 18. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M
</p>
+
</font></center></p>
<br>
+
  
<h1>
+
<p>
Modelling2: Concentration Test
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/da/T--NTHU_Taiwan--Model--T_of_95_Degradation_Rate_1_EDC_saturation_point.png">
</h1>
+
</p>
<br>
+
  
<p>
+
<p><center><font size=2>
Theory and derivation of the Freundlich Adsorption Isotherm from Kinetics
+
Figure 19. time duration for 95%degradation vs EDCs concentration  under the saturated activated carbon with the concentration of 10^(-6) M
</p>
+
</font></center></p>
  
<p>
+
<p>
In general, the rate law can be written as:
+
As we can see in the results, the scale of time duration for degrading the unsaturated EDCs solution can up to 10^(15) sec, however, the time duration for degrading the saturated EDCs solution are only 10^(10)sec. This proves that our filter can effectively accumulate EDCs to let our enzyme degrade much more faster.
</p>
+
</p>
  
<p>
 
<img src="https://static.igem.org/mediawiki/2017/a/a1/M15.png">
 
</p>
 
  
<p>
+
<h2>
If we imagine a small pore, adsorption sites near the open ends are different from at the center of the pore. This distinction occurs when the sites possess specific chemical properties. If a concentration is imposed at one end of the pore, solute must diffuse to find an open adsorption site first and it is similar as the desorption case.In this point, the exponent n is a measure of the fractal dimension of the process and the rate constant for fractal reactions is also expected to be proportional to the molecular diffusion coefficient.For both adsorption and desorption reactions but with distinct fractal dimensions (ni) and fractal rate constants (ki):
+
Modelling2: Concentration Test
</p>
+
</h2>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/e/ea/M16.png">
+
Theory and derivation of the Freundlich Adsorption Isotherm from Kinetics
</p>
+
</p>
  
<p>
+
<p>
At equilibrium, the derivative is equal to zero and the equation can then be solved for S:
+
In general, the rate law can be written as:
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/f/fb/M17.png">
+
<img src="https://static.igem.org/mediawiki/2017/a/a1/M15.png">
</p>
+
</p>
  
<p>
+
<p>
Finally, we can transform the equation to the Freundlich Adsorption equation,
+
If we imagine a small pore, adsorption sites near the open ends are different from at the center of the pore. This distinction occurs when the sites possess specific chemical properties. If a concentration is imposed at one end of the pore, solute must diffuse to find an open adsorption site first and it is similar as the desorption case.In this point, the exponent n is a measure of the fractal dimension of the process and the rate constant for fractal reactions is also expected to be proportional to the molecular diffusion coefficient.For both adsorption and desorption reactions but with distinct fractal dimensions (ni) and fractal rate constants (ki):
</p>
+
</p>
  
<p>
+
<p>
<img src="https://static.igem.org/mediawiki/2017/2/2c/M18.png">
+
<img src="https://static.igem.org/mediawiki/2017/e/ea/M16.png">
</p>
+
</p>
  
<p>
+
<p>
<font size=2>
+
At equilibrium, the derivative is equal to zero and the equation can then be solved for S:
Ce : the equilibrium concentration of the solute in the bulk solution (mg L−1)(the concentration of EDCs)
+
</p>
</p>
+
  
<p>
+
<p>
<font size=2>
+
<img src="https://static.igem.org/mediawiki/2017/f/fb/M17.png">
KF : Freundlich constant indicative of the relative adsorption capacity of the adsorbent (mg1−(1/n) L1/n g−1)
+
</p>
</p>
+
  
<p>
+
<p>
<font size=2>
+
Finally, we can transform the equation to the Freundlich Adsorption equation,
n : Freundlich constant indicative of the intensity of the adsorption
+
</p>
</p>
+
  
<p>
+
<p>
<font size=2>
+
<img src="https://static.igem.org/mediawiki/2017/2/2c/M18.png">
qe: the amount of solute adsorbed per unit weight of adsorbent at equilibrium (mg g−1)(the maximum of the adsorption)
+
</p>
</p>
+
<br>
+
  
<p>
+
<p><center><font size=2>
To further estimate our filter’s function, we’ve conducted two models based on the Freundlich Adsorption equation as following:
+
Ce : the equilibrium concentration of the solute in the bulk solution (mg L−1)(the concentration of EDCs)
</p>
+
</font></center></p>
<br>
+
  
<p>
+
<p><center><font size=2>
<b>
+
KF : Freundlich constant indicative of the relative adsorption capacity of the adsorbent (mg1−(1/n) L1/n g−1)
The adsorption capacity under different EDCs concentration
+
</font></center></p>
</b>
+
</p>
+
<br>
+
  
<p>
+
<p><center><font size=2>n : Freundlich constant indicative of the intensity of the adsorption
To test the adsorption capacity under different maximum EDCs concentration, we than fixed our maximum EDCs concentration as Ce at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. The results are shown in the following figures(Figure 20-23) :
+
</font></center></p>
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f2/T--NTHU_Taiwan--Model--Freundlich_model_1_EDC_concentrationt.png">
+
qe: the amount of solute adsorbed per unit weight of adsorbent at equilibrium (mg g−1)(the maximum of the adsorption)
</p>
+
</font></center></p>
  
<p>
 
<center>
 
<font size=2>
 
Figure 20.  qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-1) mg/L
 
</font>
 
</center>
 
</p>
 
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/e/eb/T--NTHU_Taiwan--Model--Freundlich_model_2_EDC_concentration.png">
+
To further estimate our filter’s function, we’ve conducted two models based on the Freundlich Adsorption equation as following:
</p>
+
</p>
  
<p>
 
<center>
 
<font size=2>
 
Figure 21.  qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-2) mg/L
 
</font>
 
</center>
 
</p>
 
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f1/T--NTHU_Taiwan--Model--Freundlich_model_3_EDC_concentration.png">
+
</p>
+
  
<p>
+
The adsorption capacity under different EDCs concentration
<center>
+
<font size=2>
+
Figure 22. qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-3) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
+
</p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f7/T--NTHU_Taiwan--Model--Freundlich_model_4_EDC_concentration.png">
+
</p>
+
  
<p>
 
<center>
 
<font size=2>
 
Figure 23. qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-4) mg/L
 
</font>
 
</center>
 
</p>
 
<br>
 
  
<p>
+
<p>
We can see that as the concentration of EDCs (Ce) increases, the adsorption amount per unit weight of adsorbent at eq. also increases. We deduced that it might because as the concentration arises, the collision frequency between EDCs and our activated carbon increases, leading to the higher amount of adsorbent.
+
To test the adsorption capacity under different maximum EDCs concentration, we than fixed our maximum EDCs concentration as Ce at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. The results are shown in the following figures(Figure 20-23) :
</p>
+
</p>
<br>
+
  
<p>
+
<p>
<b>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f2/T--NTHU_Taiwan--Model--Freundlich_model_1_EDC_concentrationt.png">
The usage time of filter under different EDCs concentration
+
</p>
</b>
+
</p>
+
<br>
+
  
<p>
+
<p><center><font size=2>
To test The usage time of filter under different maximum EDCs concentration, we first fixed our amount of activated carbon at 1000g and also fixed our maximum EDCs concentration at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. Based on the reference we found, we then assumed that the flow rate of water is 1.5L/sec and farmers will irrigate their farmland at the frequency of 7 days.Thus the total flow for each irrigation time will be 86400(sec)*7*1.5(L/sec)=907200(L).The results are shown in the following figures(Figure 24-27) :
+
Figure 20.  qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-1) mg/L
</p>
+
</font></center></p>
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/8/8f/T--NTHU_Taiwan--Model--Filter_design_life_1_EDC_concentration.png">
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/e/eb/T--NTHU_Taiwan--Model--Freundlich_model_2_EDC_concentration.png">
</p>
+
</p>
  
<p>
+
<p><center><font size=2>
<center>
+
Figure 21. qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-2) mg/L
<font size=2>
+
</font></center></p>
Figure 24. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-1) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/8/83/T--NTHU_Taiwan--Model--Filter_design_life_2_EDC_concentration.png">
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f1/T--NTHU_Taiwan--Model--Freundlich_model_3_EDC_concentration.png">
</p>
+
</p>
  
 +
<p><center><font size=2>
 +
Figure 22. qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-3) mg/L
 +
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/f/f7/T--NTHU_Taiwan--Model--Freundlich_model_4_EDC_concentration.png">
<font size=2>
+
</p>
Figure 25. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-2) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
+
<p><center><font size=2>
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d5/T--NTHU_Taiwan--Model--Filter_design_life_3_EDC_concentration.png">
+
Figure 23. qe vs Ce  under the maxmium EDCs concentration of 2.2*10^(-4) mg/L
</p>
+
</font></center></p>
  
<p>
 
<center>
 
<font size=2>
 
Figure 26. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-3) mg/L
 
</font>
 
</center>
 
</p>
 
  
<p>
+
<p>
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/15/T--NTHU_Taiwan--Model--Filter_design_life_4_EDC_concentration.png">
+
We can see that as the concentration of EDCs (Ce) increases, the adsorption amount per unit weight of adsorbent at eq. also increases. We deduced that it might because as the concentration arises, the collision frequency between EDCs and our activated carbon increases, leading to the higher amount of adsorbent.
</p>
+
</p>
  
  
<p>
+
<p>
<center>
+
The usage time of filter under different EDCs concentration
<font size=2>
+
</p>
Figure 27. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-4) mg/L
+
</font>
+
</center>
+
</p>
+
  
<p>
 
We can see that as the concentration of EDCs increases, The usage time of filter decreases. It may because the more EDCs are presented in the water, the more activated carbon will bind to it, which than reduces the amount of activated carbon we can utilize and it proves that our filter can eliminate the EDCs in the lower concentration but it can’t afford the concentration of EDCs beyond the safe range. As a result, our detection system can prevent the higher concentration of EDCs flowing into the farmland.
 
</p>
 
  
 +
<p>
 +
To test The usage time of filter under different maximum EDCs concentration, we first fixed our amount of activated carbon at 1000g and also fixed our maximum EDCs concentration at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. Based on the reference we found, we then assumed that the flow rate of water is 1.5L/sec and farmers will irrigate their farmland at the frequency of 7 days.Thus the total flow for each irrigation time will be 86400(sec)*7*1.5(L/sec)=907200(L).The results are shown in the following figures(Figure 24-27) :
 +
</p>
  
 +
<p>
 +
<img width="90%"src="https://static.igem.org/mediawiki/2017/8/8f/T--NTHU_Taiwan--Model--Filter_design_life_1_EDC_concentration.png">
 +
</p>
  
</center>
+
<p><center><font size=2>
</body>
+
Figure 24. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-1) mg/L
 +
</font></center></p>
  
 +
<p>
 +
<img width="90%"src="https://static.igem.org/mediawiki/2017/8/83/T--NTHU_Taiwan--Model--Filter_design_life_2_EDC_concentration.png">
 +
</p>
  
  
<p>
+
<p><center><font size=2>
<center>
+
Figure 25. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-2) mg/L
<font size=4>
+
</font></center></p>
<b>
+
Enzyme Kinetics
+
</b>
+
</font>
+
</center>
+
</p>
+
<br>
+
  
 +
<p>
 +
<img width="90%"src="https://static.igem.org/mediawiki/2017/d/d5/T--NTHU_Taiwan--Model--Filter_design_life_3_EDC_concentration.png">
 +
</p>
  
<script src="https://gist.github.com/anonymous/3668cd8c80b361855161a3621bdeb031.js"></script>
+
<p><center><font size=2>
<br>
+
Figure 26. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-3) mg/L
<br>
+
</font></center></p>
  
<p>
+
<p>
<center>
+
<img width="90%"src="https://static.igem.org/mediawiki/2017/1/15/T--NTHU_Taiwan--Model--Filter_design_life_4_EDC_concentration.png">
<font size=4>
+
</p>
<b>
+
Freundlich Model
+
</b>
+
</font>
+
</center>
+
</p>
+
<br>
+
  
  
<script src="https://gist.github.com/anonymous/4065f67ae3b79774a601b86faaff48ab.js"></script>
+
<p><center><font size=2>
 +
Figure 27. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-4) mg/L
 +
</font></center></p>
  
 +
<p>
 +
We can see that as the concentration of EDCs increases, The usage time of filter decreases. It may because the more EDCs are presented in the water, the more activated carbon will bind to it, which than reduces the amount of activated carbon we can utilize and it proves that our filter can eliminate the EDCs in the lower concentration but it can’t afford the concentration of EDCs beyond the safe range. As a result, our detection system can prevent the higher concentration of EDCs flowing into the farmland.
 +
</p>
  
 
</div>
 
  
<script type="Text/JavaScript" src="http://ajax.googleapis.com/ajax/libs/jquery/1.6/jquery.min.js"></script>
 
  
<script>
+
<center><h2>
 +
Enzyme Kinetics
 +
</h2></center>
  
// This is the jquery part of your template. 
 
// Try not modify any of this code too much since it makes your menu work.
 
  
$(document).ready(function() {
 
  
$("#HQ_page").attr('id','');
+
<script src="https://gist.github.com/anonymous/3668cd8c80b361855161a3621bdeb031.js"></script>
  
// call the functions that control the menu
 
menu_functionality();
 
hide_show_menu();
 
  
  
 +
<center><h2>
 +
Freundlich Model
 +
</h2></center>
  
//this function controls the expand and collapse buttons of the menu and changes the +/- symbols
+
Freundlich Model
function menu_functionality() {
+
  
//when clicking on a "menu_button", it will change the "+/-" accordingly and it will show/hide the corresponding submenu
+
<script src="https://gist.github.com/anonymous/4065f67ae3b79774a601b86faaff48ab.js"></script>
$(".menu_button").click(function(){
+
  
// add or remove the class "open" , this class holds the "-"
+
$(this).children().toggleClass("open");
+
// show or hide the submenu
+
$(this).next('.submenu_wrapper').fadeToggle(400);
+
});
+
  
// when the screen size is smaller than 800px, the display_menu_control button appears and will show/hide the whole menu
 
$("#display_menu_control").click(function(){
 
$('#menu_content').fadeToggle(400);
 
});
 
  
// call the current page highlight function
 
highlight_current_page();
 
}
 
  
  
// call the highlight current page function to show it on the menu with a different background color
 
function highlight_current_page() {
 
  
// select a page from the menu based on the id assigned to it and the current page name and add the class "current page" to make it change background color
 
$("#"+  wgPageName.substring(wgPageName.lastIndexOf("/")+1, wgPageName.length ) + "_page").addClass("current_page");
 
  
// now that the current_page class has been added to a menu item, make the submenu fade in
+
</div>
$(".current_page").parents(".submenu_wrapper").fadeIn(400);
+
</div>
// change the +/- symbol of the corresponding menu button
+
$(".current_page").parents(".submenu_wrapper").prev().children().toggleClass("open");
+
+
}
+
 
+
 
+
 
+
// allow button on the black menu bar to show/hide the side menu
+
function hide_show_menu() {
+
+
// in case you preview mode is selected, the menu is hidden for better visibility
+
if (window.location.href.indexOf("submit") >= 0) {
+
$(".igem_2017_menu_wrapper").hide();
+
}
+
 
+
// if the black menu bar has been loaded
+
  if (document.getElementById('bars_item')) {
+
 
+
// when the "bars_item" has been clicked
+
$("#bars_item").click(function() {
+
$("#sideMenu").hide();
+
 
+
// show/hide the menu wrapper
+
$(".igem_2017_menu_wrapper").fadeToggle("100");
+
});
+
  }
+
 
+
// because the black menu bars loads at a different time than the rest of the page, this function is set on a time out so it can run again in case it has not been loaded yet
+
else {
+
    setTimeout(hide_show_menu, 15);
+
}
+
}
+
 
+
 
+
});
+
 
+
 
+
</script>
+
  
 
</html>
 
</html>

Revision as of 12:12, 31 October 2017

Model


Modelling1: Enzyme kinetics

Theory and derivation of enzyme kinetics :

We simplified our enzyme-EDCs system as the reaction with the process of the first and second order reactions:

The initial collision of E and S is a bimolecular reaction with the second-order rate constant k1. The ES complex can then undergo one of two possible reactions: k2 is the first-order rate constant for the conversion of ES to E and P, and k-1 is the first-order rate constant for the conversion of ES back to E and S.We assume that the formation of product from ES (the step described by k2) does not occur in reverse.

The rate equation for product formation is:

However, measuring [ES] is more difficult because the concentration of the enzyme-substrate complex depends on its rate of formation from E and S and its rate of decomposition to E + S and E + P:

To simplify our analysis, we choose experimental conditions such that the substrate concentration is much greater than the enzyme concentration and ES remains constant until nearly all the substrate has been converted to product.

According to the steady-state assumption, the rate of ES formation must therefore balance the rate of ES consumption:

The total enzyme concentration, [E]T, is usually known:

This expression for [E] can be substituted into the rate equation to give:

Rearranging (by dividing both sides by [ES] and k1) gives an expression in which all three rate constants are together:

We defined KM and rearranged the equation:

We did some compute process for the equation and give:

Solving for [ES],

Finally, we can express the reaction velocity as:

The maximum reaction velocity, Vmax, can be expressed as:

And then we can get the equation,

In order to estimate the degradation capacity of the filter, we calculated horseradish peroxidase’s ability of degradation based on the equation of Michaelis-Menten kinetics :

The degradation rate under different EDCs concentration

We used several parameters according to the paper we found to calculate the initial velocity of different concentrations of BPA and NP. Also, their concentrations at different time after starting degradation.

NP:

[H2O2]=10^(-5) M

Km=10.1*10^(-6) M

Vmax=0.056*10^(-6) M/s

S=9.1*10^(-10)~9.1*10^(-6) M

BPA:

[H2O2]=0.02*10^(-3) M

Km=6*10^(-6) M

Vmax=2.22*10^(-9) M/s

S=8.77*10^(-10)~8.77*10^(-6) M

The results are shown in the following figures(Figure 1-4) :

Figure 1. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-6) mg/L

Figure 2. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-7) mg/L

Figure 3. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-8) mg/L

Figure 4. degradation speed vs EDCs concentration under the maxmium EDCs concentration of 10^(-9) mg/L

From the results of the enzyme kinetics, we can find that when the concentration of EDCs increases, the degradation rate increases dramatically. As a result, our activated carbon in the system of our filter can help HRP to degrade EDCs in the more efficient way since its outstanding ability to capture EDCs in the water and accumulate more EDCs around HRP.

To prove the accumulative ability of activated carbon

To prove that our activated carbon can effectively accumulate our EDCs, we compared the time duration for 50%,75%, and 95% degradation between different concentrations of EDCs in the unsaturated activated carbon and those in the saturated activated carbon. (Since we believed that if our activated carbon can effectively accumulate EDCs, the EDCs solution should we saturated)

We fixed the EDCs solution at the concentrations of 10^(-6) M,10^(-7) M,10^(-8) M, and 10^(-9) M. (not in the activated carbon)The results are shown in the following figures(Figure 5-19) :

Figure 5. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M

Figure 6. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M

Figure 7. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M

Figure 8. time duration for 50%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M

Figure 9. time duration for 50%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M

Figure 10. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M

Figure 11. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M

Figure 12. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M

Figure 13. time duration for 75%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M

Figure 14. time duration for 75%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M

Figure 15. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-6) M

Figure 16. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-7) M

Figure 17. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-8) M

Figure 18. time duration for 95%degradation vs EDCs concentration under the unsaturated activated carbon with the concentration of 10^(-9) M

Figure 19. time duration for 95%degradation vs EDCs concentration under the saturated activated carbon with the concentration of 10^(-6) M

As we can see in the results, the scale of time duration for degrading the unsaturated EDCs solution can up to 10^(15) sec, however, the time duration for degrading the saturated EDCs solution are only 10^(10)sec. This proves that our filter can effectively accumulate EDCs to let our enzyme degrade much more faster.

Modelling2: Concentration Test

Theory and derivation of the Freundlich Adsorption Isotherm from Kinetics

In general, the rate law can be written as:

If we imagine a small pore, adsorption sites near the open ends are different from at the center of the pore. This distinction occurs when the sites possess specific chemical properties. If a concentration is imposed at one end of the pore, solute must diffuse to find an open adsorption site first and it is similar as the desorption case.In this point, the exponent n is a measure of the fractal dimension of the process and the rate constant for fractal reactions is also expected to be proportional to the molecular diffusion coefficient.For both adsorption and desorption reactions but with distinct fractal dimensions (ni) and fractal rate constants (ki):

At equilibrium, the derivative is equal to zero and the equation can then be solved for S:

Finally, we can transform the equation to the Freundlich Adsorption equation,

Ce : the equilibrium concentration of the solute in the bulk solution (mg L−1)(the concentration of EDCs)

KF : Freundlich constant indicative of the relative adsorption capacity of the adsorbent (mg1−(1/n) L1/n g−1)

n : Freundlich constant indicative of the intensity of the adsorption

qe: the amount of solute adsorbed per unit weight of adsorbent at equilibrium (mg g−1)(the maximum of the adsorption)

To further estimate our filter’s function, we’ve conducted two models based on the Freundlich Adsorption equation as following:

The adsorption capacity under different EDCs concentration

To test the adsorption capacity under different maximum EDCs concentration, we than fixed our maximum EDCs concentration as Ce at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. The results are shown in the following figures(Figure 20-23) :

Figure 20. qe vs Ce under the maxmium EDCs concentration of 2.2*10^(-1) mg/L

Figure 21. qe vs Ce under the maxmium EDCs concentration of 2.2*10^(-2) mg/L

Figure 22. qe vs Ce under the maxmium EDCs concentration of 2.2*10^(-3) mg/L

Figure 23. qe vs Ce under the maxmium EDCs concentration of 2.2*10^(-4) mg/L

We can see that as the concentration of EDCs (Ce) increases, the adsorption amount per unit weight of adsorbent at eq. also increases. We deduced that it might because as the concentration arises, the collision frequency between EDCs and our activated carbon increases, leading to the higher amount of adsorbent.

The usage time of filter under different EDCs concentration

To test The usage time of filter under different maximum EDCs concentration, we first fixed our amount of activated carbon at 1000g and also fixed our maximum EDCs concentration at 10^(-6) M, 10^(-7) M, 10^(-8) M,and 10^(-9) M, which represent 2.2*10^(-1) mg/L, 2.2*10^(-2) mg/L, 2.2*10^(-3) mg/L, and 2.2*10^(-4) mg/L respectively. Based on the reference we found, we then assumed that the flow rate of water is 1.5L/sec and farmers will irrigate their farmland at the frequency of 7 days.Thus the total flow for each irrigation time will be 86400(sec)*7*1.5(L/sec)=907200(L).The results are shown in the following figures(Figure 24-27) :

Figure 24. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-1) mg/L

Figure 25. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-2) mg/L

Figure 26. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-3) mg/L

Figure 27. The design life vs EDCs concentration under the maxmium EDCs concentration of 2.2*10^(-4) mg/L

We can see that as the concentration of EDCs increases, The usage time of filter decreases. It may because the more EDCs are presented in the water, the more activated carbon will bind to it, which than reduces the amount of activated carbon we can utilize and it proves that our filter can eliminate the EDCs in the lower concentration but it can’t afford the concentration of EDCs beyond the safe range. As a result, our detection system can prevent the higher concentration of EDCs flowing into the farmland.

Enzyme Kinetics

Freundlich Model

Freundlich Model