Difference between revisions of "Team:NPU-China/Demonstrate"

Line 3: Line 3:
  
 
<head>
 
<head>
    <!-- Bootstrap Core CSS -->
+
  <!-- Bootstrap Core CSS -->
    <link href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet">
+
  <link href="https://cdn.bootcss.com/bootstrap/3.3.7/css/bootstrap.min.css" rel="stylesheet">
  
    <!-- Custom CSS -->
+
  <!-- Custom CSS -->
    <link href="https://2017.igem.org/Template:NPU-China/css?action=raw&ctype=text/css" rel="stylesheet">
+
  <link href="https://2017.igem.org/Template:NPU-China/css?action=raw&ctype=text/css" rel="stylesheet">
  
    <!-- Custom Fonts -->
+
  <!-- Custom Fonts -->
    <link href="https://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
+
  <link href="https://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
  
    <!-- jQuery -->
+
  <!-- jQuery -->
    <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
+
  <script src="https://cdn.bootcss.com/jquery/3.2.1/jquery.min.js"></script>
  
    <!-- Bootstrap Core JavaScript -->
+
  <!-- Bootstrap Core JavaScript -->
    <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
+
  <script src="https://cdn.bootcss.com/bootstrap/3.3.7/js/bootstrap.min.js"></script>
  
    <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
+
  <!-- HTML5 Shim and Respond.js IE8 support of HTML5 elements and media queries -->
    <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
+
  <!-- WARNING: Respond.js doesn't work if you view the page via file:// -->
    <!--[if lt IE 9]>
+
  <!--[if lt IE 9]>
 
         <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/html5shiv/3.7.0/html5shiv.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
 
         <script src="https://oss.maxcdn.com/libs/respond.js/1.4.2/respond.min.js"></script>
 
     <![endif]-->
 
     <![endif]-->
    <style>
+
  <style>
    </style>
+
  </style>
 
</head>
 
</head>
  
  
<body>
+
<body data-spy="scroll" data-target="#myScrollspy">
 +
  <!-- Navigation -->
 +
  <nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
 +
    <div class="container">
 +
      <div class="navbar-header">
 +
        <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
 +
          <span class="sr-only">Toggle navigation</span>
 +
          <span class="icon-bar"></span>
 +
          <span class="icon-bar"></span>
 +
          <span class="icon-bar"></span>
 +
        </button>
 +
        <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
 +
          <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
 +
        </a>
 +
      </div>
 +
      <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
 +
        <ul class="nav navbar-nav navbar-right">
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China">Home</a>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
 +
          </li>
 +
          <li class="dropdown">
 +
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
 +
              <b class="caret"></b>
 +
            </a>
 +
            <ul class="dropdown-menu">
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
 +
              </li>
 +
              <li>
 +
                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
 +
              </li>
 +
            </ul>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
 +
          </li>
 +
          <li>
 +
            <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
 +
          </li>
  
    <!-- Navigation -->
+
          <li class="dropdown active">
    <nav class="navbar navbar-inverse navbar-fixed-top" role="navigation">
+
            <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
        <div class="container">
+
              <b class="caret"></b>
            <div class="navbar-header">
+
            </a>
                <button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-example-navbar-collapse-1">
+
            <ul class="dropdown-menu">
                    <span class="sr-only">Toggle navigation</span>
+
              <li>
                    <span class="icon-bar"></span>
+
                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
                    <span class="icon-bar"></span>
+
              </li>
                    <span class="icon-bar"></span>
+
              <li>
                </button>
+
                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
                <a class="navbar-brand" href="https://2017.igem.org/Team:NPU-China">
+
              </li>
                    <img src="https://static.igem.org/mediawiki/2017/2/29/NPU-logo.png" style="max-width:50px;margin-top:-10px;">
+
            </ul>
                </a>
+
          </li>
            </div>
+
        </ul>
            <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
+
      </div>
                <ul class="nav navbar-nav navbar-right">
+
    </div>
                    <li>
+
  </nav>
                        <a href="https://2017.igem.org/Team:NPU-China">Home</a>
+
  <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
                    </li>
+
    <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/3c/%E9%A2%98%E7%9B%AE%E9%80%9A%E6%A0%8Fdemonstrate.jpg">  
                    <li class="dropdown">
+
    <!-- Page Content -->
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Team
+
    <div class="container">
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Aboutus">About us</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Attributions">Attributions</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown active">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Project
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Background">Background</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Description">Description</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Design">Design</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Model">Model</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Proofofconcept">Proof of concept</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/Demonstrate">Demonstrate</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li class="dropdown">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Parts
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/BasicParts">Basic Parts</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/CompositeParts">Composite Parts</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Hardware">Hardware</a>
+
                    </li>
+
                    <li class="dropdown">
+
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">HP
+
                            <b class="caret"></b>
+
                        </a>
+
                        <ul class="dropdown-menu">
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Silver">Silver</a>
+
                            </li>
+
                            <li>
+
                                <a href="https://2017.igem.org/Team:NPU-China/HP/Gold_Integrated">Gold</a>
+
                            </li>
+
                        </ul>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Collaborations">Collaborations</a>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/Achievements">Achievements</a>
+
                    </li>
+
                    <li>
+
                        <a href="https://2017.igem.org/Team:NPU-China/InterLab">InterLab</a>
+
                    </li>
+
  
                    <li class="dropdown">
+
      <!-- Page Heading/Breadcrumbs -->
                        <a href="#" class="dropdown-toggle" data-toggle="dropdown">Notebook
+
 
                            <b class="caret"></b>
+
      <!-- /.row -->
                        </a>
+
 
                        <ul class="dropdown-menu">
+
      <!-- Content Row -->
                            <li>
+
      <div class="row">
                                <a href="https://2017.igem.org/Team:NPU-China/Labnotes">Labnotes</a>
+
        <!-- Sidebar Column -->
                            </li>
+
        <div class="col-md-3" id="myScrollspy" style="font-size:12px;line-height:10px;padding-top: 100px; margin-top: -50px;">
                            <li>
+
          <ul class="nav nav-pills nav-stacked" data-spy="affix" style="width:250px; position:fixed;">
                                <a href="https://2017.igem.org/Team:NPU-China/Protocols">Protocols</a>
+
            <li class="active">
                            </li>
+
              <a href="#section-1">DNA gel extraction</a>
                        </ul>
+
            </li>
                    </li>
+
            <li>
                </ul>
+
              <a href="#section-2">Electrophoresis</a>
             </div>
+
            </li>
 +
            <li>
 +
              <a href="#section-3">Gibson assenbly</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-4">HPLC</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-5">Knock out genes of Ecoli</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-6">Crispr-cas9</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-7">Plasmid preparation</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-8">Plasmid transformation</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-9">Point mutation</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-10">Reagents</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-11">Whole cell catalysis</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-12">the LiAc SS carrier DNA PEG method</a>
 +
            </li>
 +
            <li>
 +
              <a href="#section-14">Measure protein concentration</a>
 +
             </li>
 +
            <li>
 +
              <a href="#section-13">References</a>
 +
            </li>
 +
          </ul>
 
         </div>
 
         </div>
    </nav>
+
        <!-- Content Column -->
 +
        <div class="col-md-9">
  
    <!-- Page Content -->
+
          <h2 id="section-1" style="padding-top: 100px; margin-top: -50px;">DNA gel extraction</h2>
    <div class="batu" style="background: url('https://static.igem.org/mediawiki/2017/f/fe/Npu-background.png') no-repeat fixed; overflow: hidden;">
+
          <h4>
        <img class="img-responsive" src="https://static.igem.org/mediawiki/2017/3/3c/%E9%A2%98%E7%9B%AE%E9%80%9A%E6%A0%8Fdemonstrate.jpg">
+
            1. Excise the agarose gel slice, transfer the gel slice into a 1.5ml microfuge tube.
        <div class="container" style="padding-top:70px">
+
            <br /> 2. Add a 3X sample volume of Buffer DE-A. the weight of gel is equivalent to a 100ul volume.
             <div class="row">
+
            <br /> 3. Resuspend the gel in Buffer DE-A by vortexing. Heat at 75℃ until the gel is completely dissolved(no more
                <div class="col-md-12">
+
            than 10 min)
                    <h2>
+
            <br /> 4. Add 0.5X Buffer DE-A volume of Buffer DE-B, mix.
                        GAACF2.0:Multi - level optimization of acrylic cell factory
+
            <br /> 5. Place a miniprep colume into a 2ml microfuge tube. Transfer the solubilized agarose from step 4 into the
                    </h2>
+
            column. Centrifuge at 12,000xg for 1 min.
                    <h3>
+
            <br /> 6. Discard the filtrate. Add 500ul of Buffer W1. Centrifuge at 12,000xg for 30s.
                        On the basis of GAACF1.0, we built a new cell factory of acrylic acid based on 4 levels: Core PART, SYSTEM, PATHWAY, PRODUCTION!
+
            <br /> 7. Discard the filtrate. Add 700ul of Buffer W2. Centrifuge at 12,000xg for 30s.
                        And the yield has been improved.
+
            <br /> 8. Repeat wash with W2. Centrifuge at 12,000xg for 1min.
                    </h3>
+
            <br /> 9. Discard the filtrate. Centrifuge at 12,000xg for 1min.
                    <br>
+
            <br /> 10. Transfer the miniprep column into a clean 1.5ml microfuge tube. Add 25-30ul of Eluent or deionized water
                    <h2>
+
            to the center of the membrane. Let it stand for 1min at room temperature. Centrifuge at 12,000xg for 1min. (pre-warming
                        1. Core-part:the activity of rate limiting enzyme ceaS2 has been improved
+
            the Eluent at 65℃)
                    </h2>
+
            <br />
                    <h4>
+
          </h4>
                        Acrylic acid is a byproduct of CEAS2 enzyme, the catalytic effect of wild type ceaS2 enzyme is very weak. We used the AEMD
+
          <h2 id="section-2" style="padding-top: 100px; margin-top: -50px;">Electrophoresis</h2>
                        platform to analyze the ceaS2 enzyme and screened the 38 mutants in the range of 5 Å around the active
+
          <h4>Agarose-Electrophoresis is used in order to see if the PCR product is correct and seperate DNA by the number of
                        site to carry out molecular cloning of point mutation, and then tested the acrylic acid yield by
+
            base pairs.
                        HPLC after whole cell catalysis. Because there are a large number of mutants, we divided them into
+
             <br /> ●marker was the 2 kb Plus DNA Ladder
                        five batches to carry out the reaction, the results are as follows:
+
            <br /> ●fill pockets with 5 µl DNA ladder or 10 µl sample volume with 6x loading buffer
 +
            <br /> ●running conditions: 130 V for 30-40 minutes
 +
            <br />
 +
          </h4>
 +
          <h2 id="section-3" style="padding-top: 100px; margin-top: -50px;">Gibson assembly</h2>
 +
          <h4>
 +
            1. Set up the reaction.
 +
            <br /> V(ul)=(0.02*bp)/concentration(ng/ul)
 +
            <br /> 2. Add the fragments into Gibson system.
 +
            <br /> 3. Incubate samples in a thermocycler at 50 °C for 1h.
 +
            <br /> 4. Purify the product using DNA purification kit.
 +
            <br /> 5. Transform the product into the competent cells of E.coli BL21 , following the transformation protocol.
 +
            <br />
 +
            <br /> </h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/2/2a/Sxt_%281%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>&nbsp;</h4>
  
 +
          <img src="https://static.igem.org/mediawiki/2017/3/3b/Sxt_%282%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>&nbsp;</h4>
 +
          <h4>&nbsp;</h4>
 +
          <h2 id="section-4" style="padding-top: 100px; margin-top: -50px;">HPLC</h2>
 +
          <h4>
 +
            for acrylic acid
 +
          </h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/1/16/Sxt_%283%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>
 +
            <br /> Samples have to be centrifuged at 12,000xg for 5 min in order to remove solids (cells/precipitates).
 +
            <br />
 +
            <br /> All instruments we used is ultra-high performance liquid chromatography mass spectrometry instrument ABSciex
 +
            5600 TripleTOF.
 +
            <br /> a) HPLC:
 +
            <br /> Colum: Waters SunFire C18(4.6×250 mm)
 +
            <br /> Detector wavelength: 210 nm
 +
            <br /> Flowing phase: 90% 10mM ammonium acetate/ 10% methanol
 +
            <br /> Colum temperature: 35℃
 +
            <br /> Flow rate: 1mL/min
 +
            <br /> b) MS detecting condition:
 +
            <br /> Anion mode
 +
            <br /> Ion Source Gas1: 55 psi
 +
            <br /> Ion Source Gas2: 55 psi
 +
            <br /> Curtain Gas: 35 psi
 +
            <br /> IonSpray Voltage Floating: 4500 v
 +
            <br /> Interface Heater Temperature: 550℃
 +
            <br />
 +
            <br />
 +
          </h4>
 +
          <h2 id="section-5" style="padding-top: 100px; margin-top: -50px;">Knock out genes of E ▪ coli (MG1655)</h2>
 +
          <h4>1. Pre-chill 1.5ml and 2ml microcentrifuge tubes, deionized water, 10% glycerol. Add 1ml LB to 2ml microcentrifuge
 +
            tubes.
 +
            <br /> 2. When OD600=0.6, incubate competent cells on ice for 20 min.
 +
            <br /> 3. Transfer the competent cells to 50 mL pre-chilled centrifuge tube. Centrifuge at 5,500r/min, 4 ℃ for 5 min.
 +
            <br /> 4. Discard the filtrate. Add 30ml of pre-chilled deionized water, resuspend the cells gently.
 +
            <br /> 5. Centrifuge at 5,500r/min, 4 ℃ for 5 min. Discard the filtrate. Repeat wash with deionized water.
 +
            <br /> 6. Discard the filtrate. Add 30ml of pre-chilled 10% glycerol, resuspend the cells gently.
 +
            <br /> 7. Centrifuge at 6,500r/min, 4 ℃ for 5 min. Discard the filtrate. Repeat wash with 10% glycerol.
 +
            <br /> 8. Discard the filtrate and leave over 1ml 10% glycerol to resuspend the competent cells, pipet 80ul into each
 +
            1.5ml EP tube, add 5ul of DNA and carefully mix with the competent cells. Let it stand for 2min.
 +
            <br /> 9. Add electrocompetent to DNA on ice. Move the mixture to the cuvette. Dry and shock the cells(2500V). Add
 +
            1ml of LB medium. Incubate at 30℃ for 4 hours shaking at 220rpm, pipet 100ul from each tube onto the appropriate
 +
            plate, and spread the mixture evenly across the plate. Incubate at 30℃ overnight. Position the plates with the
 +
            agar side at the top, and the lid at the bottom.
 +
            <br />
 +
          </h4>
 +
          <h2 id="section-6" style="padding-top: 100px; margin-top: -50px;">Knock out the genes of Saccharomyces cerevisiae with Crispr-Cas9</h2>
  
 +
          <img src="https://static.igem.org/mediawiki/2017/c/c6/Sxt_%284%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>&nbsp;</h4>
  
 +
          <img src="https://static.igem.org/mediawiki/2017/8/8d/Sxt_%285%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>
 +
            <br /> 2. Purify the PCR product with a DNA purification kit.
 +
            <br /> 3. Add the appropriate amount of DMT enzyme, hold for one hour at 37 ° C.
 +
            <br /> 4. transform the DNA into competent cells.
 +
            <br /> 50ul competent cell + 15ul purified DNA,incubate on ice for 30min,heat shock 45s,incubate on ice for 2min,add
 +
            LB medium and incubate for 1h.
 +
            <br /> 5. Pipet 100ul from each tube onto the plate with resistance, and spread the mixture evenly across the plate.
 +
            Incubate for 12h. Position the plates with the agar side at the top, and the lid at the bottom.
 +
            <br /> 6. use a sterile pipet tip to pick Saccharomyces cerevisiae from plates,throw the tip into the tubes of 5 ml
 +
            of LB + antibiotics,incubate in a rotary shaker. Prepare plasmid with kit for sequencing.
 +
            <br /> 7. Transfer plasmid and fragment into Saccharomyces cerevisiae using the LiAc SS carrier DNA PEG method.</h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/e/e0/Sxt_%286%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>
 +
            <br /> 8. Prepare the template: use a sterile toothpick to pick Saccharomyces cerevisiae from plates,put the toothpick
 +
            into 100ul 20mMNaOH and mix,99° C boiling for 30min. </h4>
 +
          <img src="https://static.igem.org/mediawiki/2017/8/84/Sxt_%287%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>&nbsp;</h4>
  
 +
          <img src="https://static.igem.org/mediawiki/2017/a/a8/Sxt_%288%29.png" style="max-width:60%;">
 +
          </a>
  
                        <br> In the figure, the horizontal axis stands for each different point mutation. We selected two reaction
+
          <h4>&nbsp;</h4>
                        times 21h and 42h, the vertical axis is acrylic acid production (mg / L)
+
          <h2 id="section-7" style="padding-top: 100px; margin-top: -50px;">plasmid preparation</h2>
                        <br> Due to the differences in wild type between different batches, we will normalize all the data in
+
          <h4>Tiangen mini plasmid kit
                        order to facilitate the analysis of the catalytic effect of each mutation point compared to the respective
+
            <br />
                        wt, that is, to compare each mutation point to The batch wt yield multiple is a new indicator, the
+
          </h4>
                        result is as follows:
+
                        <br>The horizontal axis in the figure is the position of each mutational site, and the vertical axis
+
                        is the multiple of the acrylic acid yield of each mutational site compared to each corresponding
+
                        batch of the wild type. It can be seen that there were 11 mutational sites, whose yields were higher
+
                        than the wild type ceaS2, in the 38 mutant programs, and the F438M mutant had the highest yield of
+
                        11 times the wild type. The effect was significant.
+
                    </h4>
+
  
                    <h2>
+
          <h2 id="section-8" style="padding-top: 100px; margin-top: -50px;">Plasmid transformation</h2>
                        2. System:S. cerevisiae is more suitable for chassis cells than E. coli
+
          <h4>1. Pipette 50µl of competent cells and 2µl of plasmid into 1.5ml tube
                    </h2>
+
            <br /> 2. Heat shock tubes at 42°C for 30s
                    <h4>
+
            <br /> 3. Incubate on ice for 2min
                        Acrylic acid has strong chemical reactivity and is very destructive to cell membrane. Therefore, the chassis cells’ tolerance
+
            <br /> 4. Pipette 250µl LB media to each transformation
                        to acrylic acid is a "roof" factor that restricts high yield of acrylic acid.
+
            <br /> 5. Incubate at 37°C for 1h
                        <br> We chose E. coli and S. cerevisiae, the two most convenient model chassis organisms in prokaryotic
+
            <br /> 6. Plating
                        and eukaryotic organisms. In order to investigate the chassis cells’ tolerance to acrylic acid, we
+
            <br /> 7. Pick single colonies
                        set up a cytotoxicity test where the two chassis cells grew in different concentrations of acrylic
+
            <br /> Reference: http://parts.igem.org/Help:Protocols/Transformation
                        acid medium, and the bacteria OD changes were monitored.The results are as follows:
+
            <br />
 +
          </h4>
  
                        <br> Fig1. OD of E.coli MG1655 under acrylic acid of different concentration and time
+
          <h2 id="section-9" style="padding-top: 100px; margin-top: -50px;">Point mutation</h2>
  
                        <br> Fig2. OD of S. cerevisiae BY4741 under acrylic acid of different concentration and time
 
                        <br> Two kinds of chassis cells have different tolerance to acrylic acid. Here we selected 500mg / L
 
                        and 1000mg / L two kinds of acrylic acid concentration to analyze:
 
  
                        <br> Fig3. A comparison of OD of BY4741 and MG1655 under 500mg/L acrylic acid
+
          <img src="https://static.igem.org/mediawiki/2017/0/0f/Sxt_%289%29.png" style="max-width:60%;">
 +
          </a>
 +
          <h4>&nbsp;</h4>
  
                        <br> Fig4. A comparison of OD of BY4741 and MG1655 under 1000mg/L acrylic acid
+
          <img src="https://static.igem.org/mediawiki/2017/6/6c/Sxt_%2810%29.png" style="max-width:60%;">
                        <br> As can be seen from the results, when the concentration of acrylic acid reached 500mg / L, E. coli
+
          </a>
                        bacterial growth was inhibited or even declined while S. cerevisiae normally grew and entered a stable
+
          <h4>
                        period. And when the concentration of acrylic acid reached 1000 mg / L, the growth of S. cerevisiae
+
            <br /> 2. Purify the PCR product with a DNA purification kit.
                        was then inhibited.
+
            <br /> 3. Add the appropriate amount of DMT enzyme, hold for one hour at 37 ° C.
                        <br> Conclusion: S. cerevisiae has a better tolerance to acrylic acid toxicity than E. coli, and may
+
            <br /> 4. Transform 5μl digested DNA into competent cells DH5α, incubate on ice for 30min.
                        be more suitable for use as chassis cells, and our results of the pathway further confirm this conclusion.
+
            <br /> 42° C heat shock, 45s. Incubate on ice for 2min.
                    </h4>
+
            <br /> add 200μl of LB. incubate at 37 °C for 1 h, 220rpm/min.
                    <h2>
+
            <br /> 5. pipet 200μl from each tube onto the plate with appropriate resistance, and spread the mixture evenly across
                        3. Pathway:Successfully build a new acrylic acid synthesis pathway and increase acrylic acid production
+
            the plate. Incubate at 37℃ overnight. Position the plates with the agar side at the top, and the lid at the bottom.
                    </h2>
+
            <br /> 6. Select single colonies for sequencing.
                    <h4>
+
            <br />
                        In order to increase the ability of the chassis cells convert ing glycerol to DHAP or G3P, we designed a new GlyDH-DAK glycerol
+
          </h4>
                        metabolic pathway. To maintain the supply of the reducing power of GlyDH enzymes, the NOX-CAT reducing
+
                        power module was also introduced, which eventually forms the acrylic synthesis pathway — GDNCC Pathways.
+
                        <br> First, we introduced new pathways into two chassis cells through two or three plasmid vectors.
+
                        <br> pET-28a-ceaS2
+
                        <br> [胶图]
+
                        <br> pCDFDuet-gld-DAK
+
                        <br> [胶图]
+
                        <br> pETDuet-NOX-CAT
+
                        <br> [胶图]
+
                        <br> YCplac33-LEU-ceaS2
+
                        <br> [胶图]
+
                        <br> YCplac33-LEU-ceaS2-NOX
+
                        <br>[胶图]
+
                        <br> YCplac33-URA-gld-DAK
+
                        <br> [胶图]
+
                        <br> We also used the whole cell catalytic reaction and HPLC determination method to determine the amount
+
                        of acrylic acid produced.
+
                        <br> For E. coli, yields of using new and old synthetic pathways of acrylic acid are as follows:
+
                        <br>Conditions: reaction time 42h, PH8.0, glycerol concentration 1%
+
                        <br>
+
                        <br> It can be seen that the acrylic acid yield is increased by 3 times after the introduction of the
+
                        GlyDH enzyme and the DAK enzyme compared to the introduction of only the ceaS2 enzyme in old pathway.
+
                        And the acrylic acid yield is increased by 8 times compared to the old one after the addition of
+
                        the reducing power module. The new pathway does enhance the ability of E. colisynthesizing acrylic
+
                        acid.
+
                        <br>As for S. cerevisiae, since S. cerevisiae itself has a higher activity of hydrogen peroxide reductase,
+
                        the reducing power module onlyhas NOX enzyme. Theacrylic acid yields ofapplying new and old synthetic
+
                        pathways are as follows:
+
                        <br> Conditions: reaction time 72h, PH8.0, glycerol concentration 2%
+
                        <br>Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the indicator
+
                        <br>
+
                        <br> It can be seen that, similar to the results of E. coli, the introduction of new pathways does improve
+
                        the ability of S. cerevisiae synthesizing acrylic acid. Compared with the old pathway introduced only
+
                        ceaS2 enzyme, acrylic acid production was increased by 3 times after introduction of GlyDH enzymes
+
                        and DAK enzymes. And the yield of acrylic acid was increased by 5 times compared to the old pathway
+
                        after the addition of the reducing power module.
+
                        <br> We also used CRISPR-CAS9 to optimize the bypass metabolic pathway of the S. cerevisiae.
+
                        <br> 【路径图】
+
                        <br> Colonial verification results show that we have successfully knocked out the S. cerevisiae's DLD
+
                        genes:
+
                        <br>
+
                        <br> Fig XX S.C BY4741's DLD1 gene Agarose gel figure of colonies verification after CRISPR knockout.
+
                        <br> Wt is the corresponding nucleic acid stripe of wild-type S.C BY4741; M is a GeneRuler 1 kb DNA ladder;
+
                        lanes 1, 2, 3 are three selected nucleic acid stripes of monoclonal colonies.
+
                        <br> We also tested the acrylic acid synthesis ability of the transformed strain. The results are as
+
                        follows:
+
                        <br> Conditions: reaction time 72h, PH8.0, glycerol concentration 2%
+
                        <br> Normalized the results based on the acrylic acid yield of BY4741-ceas2 as the indicator
+
                        <br>
+
                        <br> It can be seen that the optimization of bypass metabolic flux is conducive to the concentration
+
                        of metabolic flux and improving the yield of acrylic acid. Of course we also found in the process
+
                        of the experiment that after knocking out the 9 genes, S. cerevisiae colony growth became very slow,
+
                        indicating that a more tender method should be adopted, such as RNAi, to inhibit the bypass pathway.
+
                    </h4>
+
                    <h2>
+
                        4. Production:Multi - Conditional Optimization of Acrylic Cell Factory Catalytic Reaction Process
+
                    </h2>
+
                    <h4>
+
                        There are several important conditions for whole cell reaction: enzyme induction temperature, carbon source, Buffer, PH,
+
                        reaction time. We set different control experiments with E.coli BL21 (DE3) as the chassis cells.
+
                        The results are as follows:
+
                    </h4>
+
                    <h3>
+
                        4.1 The effects of different induction temperatures on the amount of acrylic acid were investigated. The results are as follows:
+
                    </h3>
+
                    <h4>
+
                        Induction time: 14h
+
                        <br>
+
  
                        <br>It can be seen that when the induction temperature was 30 ℃, the enzyme expression and activity were
+
          <h2 id="section-10" style="padding-top: 100px; margin-top: -50px;">Reagents</h2>
                        the highest, and the yield of acrylic acid was the best.
+
          <h4>1. LB medium(lysogeny broth)
                    </h4>
+
            <br /> The recipe for 1l LB media is as follows:
                    <h3>
+
            <br /> Tryptone 10g/L
 +
            <br /> Yeast extract 5g/L
 +
            <br /> NaCl 10g/L
 +
            <br /> 2. 0.1mM Kanamycin
 +
            <br /> MW of Kanamycin:582.58
 +
            <br /> Store at -20℃
 +
            <br /> 3. LB plate
 +
            <br /> The recipe for 1l LB plate is as follows:
 +
            <br /> Tryptone 10g/L
 +
            <br /> Yeast extract 5g/L
 +
            <br /> NaCl 10g/L
 +
            <br /> 15g Agar
 +
            <br /> Add appropriate amount of resistance.
 +
            <br /> 4. 2YT medium
 +
            <br /> The recipe for 1l LB plate is as follows:
 +
            <br /> Tryptone 16g/L
 +
            <br /> Yeast extract 10g/L
 +
            <br /> NaCl 5g/L
 +
            <br /> 5. 0.5mM IPTG
 +
            <br /> MW of IPTG:238.30
 +
            <br /> Store at -20℃
 +
            <br /> 6. 50mM PBS buffer,PH8.0
 +
            <br /> A:0.05mol/L Na2HPO4
 +
            <br /> B:0.05mol/L KH2P04
 +
            <br /> 137mMNaCl,2.7mMKCl,10mMNa2HPO4,2mMKH2PO4 for 1L.
 +
            <br />
  
 +
          </h4>
  
                        4.2 the results of production of acrylic acid with different carbon sources
+
          <h2 id="section-11" style="padding-top: 100px; margin-top: -50px;">Whole-cell catalysis</h2>
                    </h3>
+
          <h4>
                    <h4>
+
            Whole cell catalysis means using complete biological organisms (ie, whole cells, tissues or even individuals) as a catalyst.
                        Condition: PH7.4
+
            The essence is using enzymes in cells for catalysis. The method is a kind of biocatalytic technology between
                        <br> Reaction time: 16h
+
            fermentation and extract enzyme for catalysis. The advantage of whole cell catalysis is that the intracellular
                        <br> Glucose concentration: 4g/L
+
            complete multi-enzyme system can achieve the cascade reaction of enzyme, so as to make up the deficiency of cascade
                        <br>Glycerol concentration: 1%
+
            reaction in reaction which only use pure enzyme and improve the catalytic efficiency. While eliminating the complex
                        <br>
+
            process in enzyme purification, it is easier to carry out the reaction and lower production costs. <br>
                        <br> It can be seen that the yield of acrylic acid was higher when the glycerol was used as the carbon
+
            1. Prepare
                        source, because the carbon flow rate of the glycerol metabolic pathway was more concentrated, thus
+
            sterile tubes of 5 ml of 2YT+antibiotics. Use a sterile pipet tip to pick bacteria from plates. Throw the tip
                        turning more carbon source into acrylic acid. Plus, the glycerol itself owning a higher reducing
+
            into the tubes. Incubate in a rotary shaker at37℃ for 3-4h.
                        powermay also be one of the reasons.
+
            <br /> 2. Transfer 120µl of bacteria from a slant culture into an Erlenmeyer flask containing 60 mL LB medium with
                    </h4>
+
            appropriate resistance, incubate at 37 °C.
                    <h3>
+
            <br /> 3. When the OD600 reaches 0.6-0.8, the induction of IPTG (0.5 mM) should be carried out. Incubate at 30 °C on
                        4.3 The effects of different pH on the amount of acrylic acid were investigated. The results are as follows:
+
            a rotary shaker incubator at 220 rpm for 14 h.
                    </h3>
+
            <br /> 4. Harvest the bacteria(6000rpm/min 7min). Wash with 30ml PBS.
                    <h4>
+
            <br /> 5. The biocatalytic reaction mixture contained 10% glycerol, E▪ coli and 50mM PBS. Reaction time gradient: 8h,
                        Reaction conditions: 12h reaction time, 1% concentration of substrate glycerol
+
            16h, 32h.
                        <br>
+
            <br /> 6. Use HPLC for further analysis.
                        <br> It can be drawn that PH8.0 was most suitable for acrylic acid production; the reason may be that
+
            <br />
                        alkaline environment made E.coli more resistant to acrylic acid.
+
            <br /> Reference: Li N, He Y, Chen Y, et al. Production of cyclic adenosine-3′,5′-monophosphate by whole cell catalysis
                    </h4>
+
            using recombinant Escherichia coli, overexpressing adenylate cyclase[J]. Korean Journal of Chemical Engineering,
                    <h3>
+
            2013, 30(4):913-917.
                        4.4 The effect of different Buffer on the amount of acrylic acid were investigated.The results are as follows:
+
            <br />
                    </h3>
+
          </h4>
  
                    <h4>
+
          <h2 id="section-12" style="padding-top: 100px; margin-top: -50px;">the LiAc SS carrier DNA PEG method</h2>
                        It can be seen that the DHa or G3P activity of the two substrates of ceaS2 enzyme was higher under PBS buffer condition.
+
          <h4>
                    </h4>
+
            1.use a sterile pipet tip to pick Saccharomyces cerevisiae from plates,throw the tip into the tubes of appropriate medium,incubate
                    <h3>
+
            in a rotary shaker for 12h.
                        4.5 The effects of different reaction time on the amount of acrylic acid were investigated. The results are shown as follows
+
            <br /> 2.measure OD600, transfer x(x=(50×0.2)/(OD600×dilution ratio)) ml Saccharomyces cerevisiae into 50ml YPAD.
                    </h3>
+
            <br /> 3.incubate for 4-5h to make OD600 reaches 0.8-0.9.
                    <h4>
+
            <br /> 4.boil ssDNA.
                        It can be drawn that the yield of acrylic acid reached a higher level after the whole cell catalytic reaction endured for
+
            <br /> 5.Centrifuge at 3000g for 5 min. Discard the filtrate. Repeat washes with 25ml deionized water twice.
                        16h. The sampling point should be set after 16h.
+
            <br /> 6.Transfer the cells to 1.5 mL centrifuge tube. Add 1ml of deionized water, resuspend the cells gently.
                    </h4>
+
            <br /> 7.Centrifuge at 13000rpm for 30s. Discard the filtrate.
                    <h2>
+
            <br /> 8.Add 1ml of deionized water, resuspend the cells. Pipet 100ul into each 1.5 mL centrifuge tube.
                        5. Conclusion
+
            <br /> 9.Centrifuge using a Mini Centrifuge. Discard the filtrate.
                    </h2>
+
            <br /> 10.System for transformation:</h4>
                    <h4>
+
          <img src="https://static.igem.org/mediawiki/2017/7/70/Sxt_%2811%29.png" style="max-width:60%;">
                        After the above four levels of independent transformation, we currently obtain the best options, shown as follows:
+
          </a>
                        <br>
+
          <h4>
                        <br> Due to the time limit of the experiment, we did not have enough time to replace the optimal mutation
+
            <br /> 11.Incubate at 30℃ for 20min.
                        site into the existing cell factory. At present, we have acquired the highest yield of acrylic acid
+
            <br /> 12.42℃ heat shock for 40min. pipet 100ul from each tube onto the appropriate plate, and spread the mixture evenly
                        in the two cell factories, shown as follows:
+
            across the plate. Incubate at 30℃ for 2-3 days. Position the plates with the agar side at the top, and the lid
                        <br>
+
            at the bottom.
                        <br> This is currently the highest yield of acrylic acid biosynthesis, where glycerol serves as the carbon
+
            <br /> 13.Prepare plasmid for sequencing.
                        source.
+
            <br />
                    </h4>
+
  
                </div>
+
          </h4>
 +
 
 +
          <h2 id="section-14" style="padding-top: 100px; margin-top: -50px;">Measure protein concentration</h2>
 +
          <h4>
 +
            We used Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) to measure protein concentration.
 +
            <br> 1. Measure OD at 280 nm to get rough protein concentration, and then diluted the protein to 0.5-1 mg / mL.
 +
            <br> 2. Prepare the reaction solution: reagent A and B in the BCA Protein Assay Kit are mixed in a 50: 1 ratio.
 +
            <br> 3. Pipette 200 uL of reaction solution in the coated wells
 +
            <br> 4. Pipette 25 uL of diluted protein, mixed it with the reaction solution. Hold at 37 ℃ for 30 min.
 +
            <br> 5. Measure OD at 562 nm. Protein concentration is measured according to the protein standard curve.
 +
            <br>
 +
 
 +
          </h4>
 +
 
 +
 
 +
          <h2 id="section-13" style="padding-top: 100px; margin-top: -50px;">References</h2>
 +
          <h4>
 +
            http://parts.igem.org/Help:Protocols/Transformation
 +
            <br /> https://2015.igem.org/Team:Aachen/Project/Overview
 +
            <br /> http://www.zymoresearch.com/category/all-products
 +
            <br /> http://www.corning.com/worldwide/en/products/life-sciences/resources/brands/axygen-brand-products.html
 +
            <br /> http://www.tsingke.net/shop/
 +
            <br /> http://www.cwbiotech.com/
 +
            <br />
 +
          </h4>
  
            </div>
 
            <!-- Blog Post Row -->
 
  
  
 
         </div>
 
         </div>
        <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
+
      </div>
    </div>
+
      <!-- /.row -->
 +
 
 +
      <hr>
 +
 
 +
      <!-- Footer -->
 +
 
 
     </div>
 
     </div>
 +
    <img src="https://static.igem.org/mediawiki/2017/0/0c/Jz.png" class="img-responsive">
 +
  </div>
 +
  <!-- /.container -->
 +
 +
 +
  
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 15:08, 1 November 2017

DNA gel extraction

1. Excise the agarose gel slice, transfer the gel slice into a 1.5ml microfuge tube.
2. Add a 3X sample volume of Buffer DE-A. the weight of gel is equivalent to a 100ul volume.
3. Resuspend the gel in Buffer DE-A by vortexing. Heat at 75℃ until the gel is completely dissolved(no more than 10 min)
4. Add 0.5X Buffer DE-A volume of Buffer DE-B, mix.
5. Place a miniprep colume into a 2ml microfuge tube. Transfer the solubilized agarose from step 4 into the column. Centrifuge at 12,000xg for 1 min.
6. Discard the filtrate. Add 500ul of Buffer W1. Centrifuge at 12,000xg for 30s.
7. Discard the filtrate. Add 700ul of Buffer W2. Centrifuge at 12,000xg for 30s.
8. Repeat wash with W2. Centrifuge at 12,000xg for 1min.
9. Discard the filtrate. Centrifuge at 12,000xg for 1min.
10. Transfer the miniprep column into a clean 1.5ml microfuge tube. Add 25-30ul of Eluent or deionized water to the center of the membrane. Let it stand for 1min at room temperature. Centrifuge at 12,000xg for 1min. (pre-warming the Eluent at 65℃)

Electrophoresis

Agarose-Electrophoresis is used in order to see if the PCR product is correct and seperate DNA by the number of base pairs.
●marker was the 2 kb Plus DNA Ladder
●fill pockets with 5 µl DNA ladder or 10 µl sample volume with 6x loading buffer
●running conditions: 130 V for 30-40 minutes

Gibson assembly

1. Set up the reaction.
V(ul)=(0.02*bp)/concentration(ng/ul)
2. Add the fragments into Gibson system.
3. Incubate samples in a thermocycler at 50 °C for 1h.
4. Purify the product using DNA purification kit.
5. Transform the product into the competent cells of E.coli BL21 , following the transformation protocol.

 

 

 

HPLC

for acrylic acid


Samples have to be centrifuged at 12,000xg for 5 min in order to remove solids (cells/precipitates).

All instruments we used is ultra-high performance liquid chromatography mass spectrometry instrument ABSciex 5600 TripleTOF.
a) HPLC:
Colum: Waters SunFire C18(4.6×250 mm)
Detector wavelength: 210 nm
Flowing phase: 90% 10mM ammonium acetate/ 10% methanol
Colum temperature: 35℃
Flow rate: 1mL/min
b) MS detecting condition:
Anion mode
Ion Source Gas1: 55 psi
Ion Source Gas2: 55 psi
Curtain Gas: 35 psi
IonSpray Voltage Floating: 4500 v
Interface Heater Temperature: 550℃

Knock out genes of E ▪ coli (MG1655)

1. Pre-chill 1.5ml and 2ml microcentrifuge tubes, deionized water, 10% glycerol. Add 1ml LB to 2ml microcentrifuge tubes.
2. When OD600=0.6, incubate competent cells on ice for 20 min.
3. Transfer the competent cells to 50 mL pre-chilled centrifuge tube. Centrifuge at 5,500r/min, 4 ℃ for 5 min.
4. Discard the filtrate. Add 30ml of pre-chilled deionized water, resuspend the cells gently.
5. Centrifuge at 5,500r/min, 4 ℃ for 5 min. Discard the filtrate. Repeat wash with deionized water.
6. Discard the filtrate. Add 30ml of pre-chilled 10% glycerol, resuspend the cells gently.
7. Centrifuge at 6,500r/min, 4 ℃ for 5 min. Discard the filtrate. Repeat wash with 10% glycerol.
8. Discard the filtrate and leave over 1ml 10% glycerol to resuspend the competent cells, pipet 80ul into each 1.5ml EP tube, add 5ul of DNA and carefully mix with the competent cells. Let it stand for 2min.
9. Add electrocompetent to DNA on ice. Move the mixture to the cuvette. Dry and shock the cells(2500V). Add 1ml of LB medium. Incubate at 30℃ for 4 hours shaking at 220rpm, pipet 100ul from each tube onto the appropriate plate, and spread the mixture evenly across the plate. Incubate at 30℃ overnight. Position the plates with the agar side at the top, and the lid at the bottom.

Knock out the genes of Saccharomyces cerevisiae with Crispr-Cas9

 


2. Purify the PCR product with a DNA purification kit.
3. Add the appropriate amount of DMT enzyme, hold for one hour at 37 ° C.
4. transform the DNA into competent cells.
50ul competent cell + 15ul purified DNA,incubate on ice for 30min,heat shock 45s,incubate on ice for 2min,add LB medium and incubate for 1h.
5. Pipet 100ul from each tube onto the plate with resistance, and spread the mixture evenly across the plate. Incubate for 12h. Position the plates with the agar side at the top, and the lid at the bottom.
6. use a sterile pipet tip to pick Saccharomyces cerevisiae from plates,throw the tip into the tubes of 5 ml of LB + antibiotics,incubate in a rotary shaker. Prepare plasmid with kit for sequencing.
7. Transfer plasmid and fragment into Saccharomyces cerevisiae using the LiAc SS carrier DNA PEG method.


8. Prepare the template: use a sterile toothpick to pick Saccharomyces cerevisiae from plates,put the toothpick into 100ul 20mMNaOH and mix,99° C boiling for 30min.

 

 

plasmid preparation

Tiangen mini plasmid kit

Plasmid transformation

1. Pipette 50µl of competent cells and 2µl of plasmid into 1.5ml tube
2. Heat shock tubes at 42°C for 30s
3. Incubate on ice for 2min
4. Pipette 250µl LB media to each transformation
5. Incubate at 37°C for 1h
6. Plating
7. Pick single colonies
Reference: http://parts.igem.org/Help:Protocols/Transformation

Point mutation

 


2. Purify the PCR product with a DNA purification kit.
3. Add the appropriate amount of DMT enzyme, hold for one hour at 37 ° C.
4. Transform 5μl digested DNA into competent cells DH5α, incubate on ice for 30min.
42° C heat shock, 45s. Incubate on ice for 2min.
add 200μl of LB. incubate at 37 °C for 1 h, 220rpm/min.
5. pipet 200μl from each tube onto the plate with appropriate resistance, and spread the mixture evenly across the plate. Incubate at 37℃ overnight. Position the plates with the agar side at the top, and the lid at the bottom.
6. Select single colonies for sequencing.

Reagents

1. LB medium(lysogeny broth)
The recipe for 1l LB media is as follows:
Tryptone 10g/L
Yeast extract 5g/L
NaCl 10g/L
2. 0.1mM Kanamycin
MW of Kanamycin:582.58
Store at -20℃
3. LB plate
The recipe for 1l LB plate is as follows:
Tryptone 10g/L
Yeast extract 5g/L
NaCl 10g/L
15g Agar
Add appropriate amount of resistance.
4. 2YT medium
The recipe for 1l LB plate is as follows:
Tryptone 16g/L
Yeast extract 10g/L
NaCl 5g/L
5. 0.5mM IPTG
MW of IPTG:238.30
Store at -20℃
6. 50mM PBS buffer,PH8.0
A:0.05mol/L Na2HPO4
B:0.05mol/L KH2P04
137mMNaCl,2.7mMKCl,10mMNa2HPO4,2mMKH2PO4 for 1L.

Whole-cell catalysis

Whole cell catalysis means using complete biological organisms (ie, whole cells, tissues or even individuals) as a catalyst. The essence is using enzymes in cells for catalysis. The method is a kind of biocatalytic technology between fermentation and extract enzyme for catalysis. The advantage of whole cell catalysis is that the intracellular complete multi-enzyme system can achieve the cascade reaction of enzyme, so as to make up the deficiency of cascade reaction in reaction which only use pure enzyme and improve the catalytic efficiency. While eliminating the complex process in enzyme purification, it is easier to carry out the reaction and lower production costs.
1. Prepare sterile tubes of 5 ml of 2YT+antibiotics. Use a sterile pipet tip to pick bacteria from plates. Throw the tip into the tubes. Incubate in a rotary shaker at37℃ for 3-4h.
2. Transfer 120µl of bacteria from a slant culture into an Erlenmeyer flask containing 60 mL LB medium with appropriate resistance, incubate at 37 °C.
3. When the OD600 reaches 0.6-0.8, the induction of IPTG (0.5 mM) should be carried out. Incubate at 30 °C on a rotary shaker incubator at 220 rpm for 14 h.
4. Harvest the bacteria(6000rpm/min 7min). Wash with 30ml PBS.
5. The biocatalytic reaction mixture contained 10% glycerol, E▪ coli and 50mM PBS. Reaction time gradient: 8h, 16h, 32h.
6. Use HPLC for further analysis.

Reference: Li N, He Y, Chen Y, et al. Production of cyclic adenosine-3′,5′-monophosphate by whole cell catalysis using recombinant Escherichia coli, overexpressing adenylate cyclase[J]. Korean Journal of Chemical Engineering, 2013, 30(4):913-917.

the LiAc SS carrier DNA PEG method

1.use a sterile pipet tip to pick Saccharomyces cerevisiae from plates,throw the tip into the tubes of appropriate medium,incubate in a rotary shaker for 12h.
2.measure OD600, transfer x(x=(50×0.2)/(OD600×dilution ratio)) ml Saccharomyces cerevisiae into 50ml YPAD.
3.incubate for 4-5h to make OD600 reaches 0.8-0.9.
4.boil ssDNA.
5.Centrifuge at 3000g for 5 min. Discard the filtrate. Repeat washes with 25ml deionized water twice.
6.Transfer the cells to 1.5 mL centrifuge tube. Add 1ml of deionized water, resuspend the cells gently.
7.Centrifuge at 13000rpm for 30s. Discard the filtrate.
8.Add 1ml of deionized water, resuspend the cells. Pipet 100ul into each 1.5 mL centrifuge tube.
9.Centrifuge using a Mini Centrifuge. Discard the filtrate.
10.System for transformation:


11.Incubate at 30℃ for 20min.
12.42℃ heat shock for 40min. pipet 100ul from each tube onto the appropriate plate, and spread the mixture evenly across the plate. Incubate at 30℃ for 2-3 days. Position the plates with the agar side at the top, and the lid at the bottom.
13.Prepare plasmid for sequencing.

Measure protein concentration

We used Pierce BCA Protein Assay Kit (Thermo Fisher Scientific) to measure protein concentration.
1. Measure OD at 280 nm to get rough protein concentration, and then diluted the protein to 0.5-1 mg / mL.
2. Prepare the reaction solution: reagent A and B in the BCA Protein Assay Kit are mixed in a 50: 1 ratio.
3. Pipette 200 uL of reaction solution in the coated wells
4. Pipette 25 uL of diluted protein, mixed it with the reaction solution. Hold at 37 ℃ for 30 min.
5. Measure OD at 562 nm. Protein concentration is measured according to the protein standard curve.

References

http://parts.igem.org/Help:Protocols/Transformation
https://2015.igem.org/Team:Aachen/Project/Overview
http://www.zymoresearch.com/category/all-products
http://www.corning.com/worldwide/en/products/life-sciences/resources/brands/axygen-brand-products.html
http://www.tsingke.net/shop/
http://www.cwbiotech.com/