Difference between revisions of "Team:UNOTT/Modelling"

Line 71: Line 71:
 
.crop {
 
.crop {
 
     width: 100%;
 
     width: 100%;
     height: 700px;
+
     height: 800px;
 
     overflow: hidden;
 
     overflow: hidden;
 
}
 
}
Line 347: Line 347:
  
 
     <div class="expandable-box">
 
     <div class="expandable-box">
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;">Relationship between Max Fluorescence and Protein Concentration</h4>
+
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;">Relationship between Fluorescence and Protein Concentration</h4>
  
 
<h5 style="color: #C0C0C0; font-weight: bold; font-size: 20px;"> Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized </h5>
 
<h5 style="color: #C0C0C0; font-weight: bold; font-size: 20px;"> Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized </h5>
 
       <center></center>
 
       <center></center>
 
           <div id="clear5" style="display: none;">
 
           <div id="clear5" style="display: none;">
<p> Another issue the team faced was that at any given time, it was expected that the proteins would be expressed so the bacteria would fluoresce. This can be confirmed by looking at the bacteria after being constructed and observing that they are giving off light. However, it was unknown what intensity this fluorescence would be. </p>
+
<p> Another issue the team faced was that at any given time, it was expected that the proteins would be expressed so the bacteria would fluoresce. This can be confirmed by looking at the bacteria after being engineered and observing that they are giving off light. However, it was unknown what intensity this fluorescence would be. </p>
 
<br></br>
 
<br></br>
<p> To solve this issue,  an equation was developed to find out what the intensity of fluorescence would be at that certain time. This consisted of of calculating the protein concentration at the time and using real life lab data of the fluorescence at that time period, the team could map that intensity to the protein concentration at that time. </p>
+
<p> To solve this issue,  an equation was developed to find out what the intensity of fluorescence would be at that certain time. This consisted of calculating the protein concentration at the time and using fluorescence data provided by real lab experiments, at that time period, the team could map that intensity to the protein concentration at that time. </p>
 
<br></br>
 
<br></br>
<p> When the fluorescence data received from the wet lab were graphed, a model was constructed using the data. Originally, the data from the lab was the Fluorescence against Time but by using the Gene Transcription Regulation by Repressors model developed earlier <sup> 1 </sup>, the team were able to estimate the protein concentration at a certain time periods.</p>
+
<p> When the fluorescence data received from the wet lab were graphed, a model was constructed using the data. Originally, the data from the lab was the Fluorescence against Time but by using the Gene Transcription Regulation by Repressors model developed earlier <sup> 1 </sup>, the team were able to estimate the protein concentration at given time points. </p>
  
 
<sup> Figure 7 </sup>
 
<sup> Figure 7 </sup>
Line 362: Line 362:
 
       <p style="text-align: center;" > <img src="https://static.igem.org/mediawiki/2017/1/19/T--UNOTT--ProteinConcVsFluorescence.png" class="border" height="600" width="1000" style= position: fixed; align=center; > </p>
 
       <p style="text-align: center;" > <img src="https://static.igem.org/mediawiki/2017/1/19/T--UNOTT--ProteinConcVsFluorescence.png" class="border" height="600" width="1000" style= position: fixed; align=center; > </p>
 
       <br> </br>
 
       <br> </br>
<p> These graphs show the relationship between protein concentration of a certain type of protein and the intensity that can be expected of it. By integrating real life data into the models, we can have accurate representation of how the bacteria would behave in real life. This suggests that when comparing the modelled data to real life data from for our lab data set. there is a strong fit. However, this is not necessarily true for all cases: we simply only had data for the conditions we were using, which suggests that more data would be required for the models to be truly representative of real world data.</p>
+
<p> These graphs show the relationship between protein concentration of a certain type of protein and the intensity that can be expected of it. By integrating real life data into the models, we can have accurate representation of how the bacteria would behave in real life. This suggests that when comparing the modelled data to real life data, there is a strong fit. However, this is not necessarily true for all cases: we simply only had data for the conditions we were using, which suggests that more data would be required for the models to be truly representative of real world data.</p>
 
<br> </br>  
 
<br> </br>  
<p> On evaluation, the fit for the CFP appears quite strange! Unlike GFP and RFP, this the trend line doesn't look similar. Insight from the wet lab suggested there were mistakes made with reading from the fluorescence reader, which can be attributed to this behaviour. One way to fix this is to check the settings for the readers and choose a wavelength which is exclusively going to cause the CFP to fluoresce as the Absorption and Emission Wavelength models suggests that using a wavelength of 375nm might mean interference from the GFP would be kept to a minimum. Furthermore, due to time constraints, rather than implementing the relationship directly from lab data, the data was fitted using a Polynomial Fit of Order 3 using Excel and an equation was calculated from these. These equations were directly plugged into the simulation. However, this is inaccurate as the R squared value was ... , suggesting that it doesn't fully capture the data trend. In order to improve this situation, if there was more data available for different scenarios such as with using different wavelengths and concentration of proteins, the model could be validated against more data and refined. Once done, this could substitute the polynomial fit. Lastly, to improve the data, rather than having to use another model to estimate the protein concentration, the team could read for protein concentration during fluorescence readings. This means there is a separate data set to validate the model from, to check whether our protein calculations were correct. </p>
+
<p> On evaluation, the fit for the CFP appears quite strange! Insight from the wet lab suggested there were mistakes made with reading from the fluorescence reader, which can be attributed to this behaviour. One way to fix this is set the spectro-photometer at a more restrictive wavelength that would minimise the cross-interference from GFP, like 375nm, as suggested by the Absorption and Emission Wavelength models developed earlier. Furthermore, due to time constraints, rather than implementing the relationship directly from lab data, the data was fitted using a Polynomial Fit of Order 3 using Excel and an equation was calculated from these. These equations were directly plugged into the simulation. However, this is inaccurate as the R squared value was ... , suggesting that it doesn't fully capture the data trend. In order to improve this situation, if there was more data available for different scenarios such as with using different wavelengths and concentration of proteins, the model could be validated against more data and refined. Once done, this could substitute the polynomial fit. Lastly, to improve the data, rather than having to use another model to estimate the protein concentration, the team could read for protein concentration during fluorescence readings. This means there is a separate data set to validate the model from, to check whether our protein calculations were correct. </p>
 
<br></br>
 
<br></br>
 
<p> These relationships were implemented into the simulation to give the expected spectra produced by each protein. This highlights another use: by adding or subtracting values from our fit, we can create a threshold for our Keys. This was essential when developing the Raw Data Simulator. <sup> 2 </sup></p>
 
<p> These relationships were implemented into the simulation to give the expected spectra produced by each protein. This highlights another use: by adding or subtracting values from our fit, we can create a threshold for our Keys. This was essential when developing the Raw Data Simulator. <sup> 2 </sup></p>
Line 378: Line 378:
  
 
  <div class="expandable-box">
 
  <div class="expandable-box">
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;"> Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP</h4><center></center>
+
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;"> Absorption and Emission Wavelengths of sfGFP, mRFP & ECFP</h4><center></center>
  
 
<h5 style="color: #C0C0C0; font-weight: bold; font-size: 20px;"> Working out which wavelengths are required to produce a fluorescence spectra. </h5>
 
<h5 style="color: #C0C0C0; font-weight: bold; font-size: 20px;"> Working out which wavelengths are required to produce a fluorescence spectra. </h5>
  
 
       <div id="clear7" style="display: none;">
 
       <div id="clear7" style="display: none;">
<p> After concluding the general scheme we would be using, the team evaluated the selection of proteins. The proteins selected for the system use fluorescence, indicating they take in a light at a certain wavelength, and re-emit it at a different wavelength. This had to be considered because it informs the wet-lab in knowing which wavelengths are required to produce a spectra as well as highlighting the importance of considering any side effects from producing the spectra such as light being reabsorbed and re-emitted at a different wavelength / colour, which would result in the spectra being similar to each other rather than unique. </p>
+
<p> After concluding the general scheme we would be using, the team evaluated the selection of proteins. The proteins selected for the system use fluorescence, indicating they take in a light at a certain wavelength, and re-emit it at a different wavelength. This had to be considered because it informs the wet-lab in knowing which wavelengths are required to produce a spectra as well as highlighting the importance of considering any side effects from producing the spectra such as light being reabsorbed and re-emitted at a different wavelength, which would result in the spectra being similar to each other rather than unique. </p>
 
<br> </br>
 
<br> </br>
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>
 
<br> </br>  
 
<br> </br>  
<p style="text-align: center;" >  Figure 4 </p>
 
  
 
<p style="text-align: center;" >  <img src="https://static.igem.org/mediawiki/2017/8/8f/T--UNOTT--SpectrumAbsoprtionEM.png" class="border" width="550" height="300" style= position: fixed; align=center;> </p>  
 
<p style="text-align: center;" >  <img src="https://static.igem.org/mediawiki/2017/8/8f/T--UNOTT--SpectrumAbsoprtionEM.png" class="border" width="550" height="300" style= position: fixed; align=center;> </p>  
 
+
<p style="text-align: center;" > The absorption and emission spectra from RFP, GFP and ECHP. </p>
 
<p>This graph tells us the emitted light is expected to be at a higher wavelength than the absorbed wavelength. This must be considered in the model as there is overlap between emitted and absorbed wavelengths implying emitted light may be absorbed and re-emitted at a higher wavelength.</p>
 
<p>This graph tells us the emitted light is expected to be at a higher wavelength than the absorbed wavelength. This must be considered in the model as there is overlap between emitted and absorbed wavelengths implying emitted light may be absorbed and re-emitted at a higher wavelength.</p>
  

Revision as of 01:59, 2 November 2017





MODELLING

Constitutive Gene Expression

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Absorption and Emission Wavelengths of sfGFP, mRFP & ECFP

Working out which wavelengths are required to produce a fluorescence spectra.

Are Our Constructions Random?

Showing that our constructions are random and why they are random

Conclusion

What iGEM Nottingham 2017 learnt from modelling and how modelling impacted the project.