Difference between revisions of "Team:UNOTT/Modelling"

Line 387: Line 387:
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>
 
<br> </br>  
 
<br> </br>  
 
+
<br> </br>
<p style="text-align: center;" >  <img src="https://static.igem.org/mediawiki/2017/8/8f/T--UNOTT--SpectrumAbsoprtionEM.png" class="border" width="550" height="300" style= position: fixed; align=center;> </p>  
+
<p style="text-align: center;" >  <img src="https://static.igem.org/mediawiki/2017/8/8f/T--UNOTT--SpectrumAbsoprtionEM.png" class="border" width="500" height="600" style= position: fixed; align=center;> </p>  
<p style="text-align: center;" > The absorption and emission spectra from RFP, GFP and ECHP. </p>  
+
<p style="text-align: center;" > The absorption and emission spectra from RFP, GFP and ECHP. The dotted lines show absorption wavelengths, and the solid lines show emission wavelengths. </p>
 +
<br> </br>
 
<p>This graph tells us the emitted light is expected to be at a higher wavelength than the absorbed wavelength. This must be considered in the model as there is overlap between emitted and absorbed wavelengths implying emitted light may be absorbed and re-emitted at a higher wavelength.</p>
 
<p>This graph tells us the emitted light is expected to be at a higher wavelength than the absorbed wavelength. This must be considered in the model as there is overlap between emitted and absorbed wavelengths implying emitted light may be absorbed and re-emitted at a higher wavelength.</p>
  

Revision as of 02:04, 2 November 2017





MODELLING

Constitutive Gene Expression

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Absorption and Emission Wavelengths of sfGFP, mRFP & ECFP

Working out which wavelengths are required to produce a fluorescence spectra.

Are Our Constructions Random?

Showing that our constructions are random and why they are random

Conclusion

What iGEM Nottingham 2017 learnt from modelling and how modelling impacted the project.