|
|
Line 328: |
Line 328: |
| <li>1+2: difference between a reaction mixture with and without xanthosine</li> | | <li>1+2: difference between a reaction mixture with and without xanthosine</li> |
| <li>2+4: difference between no reaction and a possible reaction</li> | | <li>2+4: difference between no reaction and a possible reaction</li> |
− | </ol> | + | </ol><br><br> |
| <article> | | <article> |
| We hereby could figure out the absorption rate at which xanthosine can be measured (B) as well as ensure that the peak was independent from the CDA (A). Further on, we could identify the absorbance of CDA at about 254-260 nm (A and C). (Figure 1)) | | We hereby could figure out the absorption rate at which xanthosine can be measured (B) as well as ensure that the peak was independent from the CDA (A). Further on, we could identify the absorbance of CDA at about 254-260 nm (A and C). (Figure 1)) |
Line 339: |
Line 339: |
| | | |
| <div class="article"> | | <div class="article"> |
− | Afterwards we set up new activity assays, using 196 µL of the reaction mixture in six of the well plate’s holes. After measuring the absorbance at 282 nm, we added 4 µL of either water or the enzyme (6 µg) to three biological replicates each, continuing the (previous) measurements for about an hour. | + | Afterwards we set up new activity assays, using 196 µL of the reaction mixture in six of the well plate’s holes. After measuring the absorbance at 282 nm, we added 4 µL of either water or the enzyme (6 µg) to three biological replicates each, continuing the (previous) measurements for about an hour. <br><br> |
− | </article> | + | |
| | | |
| The reaction of the cytidine deaminase with xanthosine showed diverse results (Figure 3). Here, also a slight decrease of the xanthosine concentration could be seen, which, however, was not significant. | | The reaction of the cytidine deaminase with xanthosine showed diverse results (Figure 3). Here, also a slight decrease of the xanthosine concentration could be seen, which, however, was not significant. |
− | <div class="figure seventy"> | + | </article> |
| + | |
| + | <div class="figure medium"> |
| <img class="figure image" src="https://static.igem.org/mediawiki/2017/8/86/T--Bielefeld-CeBiTec--XanthosineCDA.svg"> | | <img class="figure image" src="https://static.igem.org/mediawiki/2017/8/86/T--Bielefeld-CeBiTec--XanthosineCDA.svg"> |
| <p class="figure subtitle"><b>Figure (3): Enzyme activity assay for the reaction of the cytidine deaminase with xanthosine as a substrate.</b>The reaction was set up at room temperature, using three biological replicates each. After adding CDA to the reaction mixture, a slight decrease in the absorbance at 282 nm was visible. However, as there is also a very small decrease for the addition of water, no significant difference was observed.</p> | | <p class="figure subtitle"><b>Figure (3): Enzyme activity assay for the reaction of the cytidine deaminase with xanthosine as a substrate.</b>The reaction was set up at room temperature, using three biological replicates each. After adding CDA to the reaction mixture, a slight decrease in the absorbance at 282 nm was visible. However, as there is also a very small decrease for the addition of water, no significant difference was observed.</p> |
− | </div> | + | </div> |
| + | |
| + | <div class="article"> |
| The HPLC-MicroTofQ Measurements could only make up the xanthosine and various other substances. However, there were no significant masses and peaks for guanosine or iso-guanosine. (Figure 4) | | The HPLC-MicroTofQ Measurements could only make up the xanthosine and various other substances. However, there were no significant masses and peaks for guanosine or iso-guanosine. (Figure 4) |
− | <div class="figure seventy"> | + | </div> |
| + | |
| + | <div class="figure medium"> |
| <img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--HPLC_xanthosine.png"> | | <img class="figure image" src="https://static.igem.org/mediawiki/2017/2/22/T--Bielefeld-CeBiTec--HPLC_xanthosine.png"> |
| <p class="figure subtitle"><b>Figure (4): HPLC-MicroTofQ measurement for the products of the reaction of CDA with xanthosine. </b>Measurement at 40 °C. Even if many different masses could be detected, none of these could be matched to guanosine or iso-guanosine. For these, a peak should be at about 282 g/mol.</p> | | <p class="figure subtitle"><b>Figure (4): HPLC-MicroTofQ measurement for the products of the reaction of CDA with xanthosine. </b>Measurement at 40 °C. Even if many different masses could be detected, none of these could be matched to guanosine or iso-guanosine. For these, a peak should be at about 282 g/mol.</p> |
| </div> | | </div> |
| | | |
| + | <div class="article"> |
| So, with only a slight decrease of the absorbance and no detectable products in the HPLC, it seems reliable that there is only a very small amount of xanthosine converted to isoguanosine, since the reaction is not specific to the CDA and thus rare. However, supplementary tests and experiments with different reaction mixtures would be needed to further analyze it. | | So, with only a slight decrease of the absorbance and no detectable products in the HPLC, it seems reliable that there is only a very small amount of xanthosine converted to isoguanosine, since the reaction is not specific to the CDA and thus rare. However, supplementary tests and experiments with different reaction mixtures would be needed to further analyze it. |
− | <br> | + | </div> |
| | | |
| | | |
Line 360: |
Line 367: |
| | | |
| <h4> GMPS </h4> | | <h4> GMPS </h4> |
− | | + | <div class="article"> |
− | | + | |
| We set up the reaction mixture of the two isoforms of the GMPS following a protocol for the enzyme activity assay by Abbott, J., Newell, J., Lightcap, C. et al.(2006). We also regarded the original paper from 1985 that stated the absorbance at 290 nm for the given amount of XMP within the mixture. For that, we set up the following reaction mixture: | | We set up the reaction mixture of the two isoforms of the GMPS following a protocol for the enzyme activity assay by Abbott, J., Newell, J., Lightcap, C. et al.(2006). We also regarded the original paper from 1985 that stated the absorbance at 290 nm for the given amount of XMP within the mixture. For that, we set up the following reaction mixture: |
| + | </div> <br><br> |
| | | |
| <ul> | | <ul> |
Line 373: |
Line 380: |
| <li>0.8mM EDTA</li> | | <li>0.8mM EDTA</li> |
| <li>Filled up with ddH<sub>2</sub>O</li> | | <li>Filled up with ddH<sub>2</sub>O</li> |
− | </ul> | + | </ul><br><br> |
| | | |
− | Due to their instability, XMP and ATP were always added freshly. After the samples were set up, we measured them with the Tecan infinite® 200 reader for about 20 minutes at an absorbance of 290 nm. Afterwards, 4 µL of either water or 4 µL (6 µg) of the isoforms of the GMPS (isoform1: <a href=" http://parts.igem.org/Part:BBa_K2201060"> BBa_K220160</a> and isoform 2: <a href=" http://parts.igem.org/Part:BBa_K2201061">BBa_K220161</a>) were each added to three samples. The measurement was continued for approximately an hour. The activity assays of isoforms 1 and 2 both proved that the GMPS enzymes are working correctly, reducing the amount of XMP in the reaction mixture significantly. Therefore, the absorption at 290 nm decreased a lot after adding the enzyme to the solution of isoform 1 of GMPS, whereas the initial decrease was weaker for the codon-optimized isoform 2. However, both decreased the amount of XMP about the same within the hour in which their reaction was measured. Thus, it can be said that both, isoform 1 and isoform 2 are working as expected (See Figure 5 and Figure 6 for comparison) | + | <div class="article"> |
| + | Due to their instability, XMP and ATP were always added freshly. After the samples were set up, we measured them with the Tecan infinite® 200 reader for about 20 minutes at an absorbance of 290 nm. Afterwards, 4 µL of either water or 4 µL (6 µg) of the isoforms of the GMPS (isoform1: <a href=" http://parts.igem.org/Part:BBa_K2201060"> BBa_K220160</a> and isoform 2: <a href=" http://parts.igem.org/Part:BBa_K2201061">BBa_K220161</a>) were each added to three samples. The measurement was continued for approximately an hour. The activity assays of isoforms 1 and 2 both proved that the GMPS enzymes are working correctly, reducing the amount of XMP in the reaction mixture significantly. Therefore, the absorption at 290 nm decreased a lot after adding the enzyme to the solution of isoform 1 of GMPS, whereas the initial decrease was weaker for the codon-optimized isoform 2. However, both decreased the amount of XMP about the same within the hour in which their reaction was measured. Thus, it can be said that both, isoform 1 and isoform 2 are working as expected (See Figure 5 and Figure 6 for comparison) |
| + | </div> |
| + | |
| <div class="contentline"> | | <div class="contentline"> |
| <div class="half left"> | | <div class="half left"> |