Line 11: | Line 11: | ||
<div class="column full_size"> | <div class="column full_size"> | ||
− | <div class="toggle" onclick="toggleDiv( | + | <div class="toggle" onclick="toggleDiv()"> |
<h2> Metabolic Modeling</h2> | <h2> Metabolic Modeling</h2> | ||
</div> | </div> | ||
− | <div | + | <div id="toggleID"> |
<p0> Recent advances in computational biology led to emergence of databases with whole-genome metabolic networks, which for simplicity we will call models. They describe the flow of metabolites within a particular organism. Applying <em>constraint-based methods</em> to the model the allows to make quantitative predictions about the phenotype while eliminating many of the complex parameters. Of particular interest to our project is <em>flux balance analysis (FBA)</em>, which allows to predict the optimal steady-state biomass flux, which is often correlated with cell growth rate<sup>[1]</sup> and is the most likely observed phenotype. One major advantage of FBA is that it does not require knowledge of enzymatic parameters. The mathematics of FBA is elucidated in <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911401/figure/F2/">this figure<sup>[2]</sup></a></p0> | <p0> Recent advances in computational biology led to emergence of databases with whole-genome metabolic networks, which for simplicity we will call models. They describe the flow of metabolites within a particular organism. Applying <em>constraint-based methods</em> to the model the allows to make quantitative predictions about the phenotype while eliminating many of the complex parameters. Of particular interest to our project is <em>flux balance analysis (FBA)</em>, which allows to predict the optimal steady-state biomass flux, which is often correlated with cell growth rate<sup>[1]</sup> and is the most likely observed phenotype. One major advantage of FBA is that it does not require knowledge of enzymatic parameters. The mathematics of FBA is elucidated in <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4911401/figure/F2/">this figure<sup>[2]</sup></a></p0> | ||
<br></br> | <br></br> |
Revision as of 15:25, 15 August 2017
Metabolic Modeling
Results and Discussion
References
[1] Feist, Adam M., and Bernhard O. Palsson. “The Biomass Objective Function.” Current opinion in microbiology 13.3 (2010): 344–349. PMC. Web. 28 July 2017.
[2] Cuevas, Daniel A. et al. “From DNA to FBA: How to Build Your Own Genome-Scale Metabolic Model.” Frontiers in Microbiology 7 (2016): 907. PMC. Web. 27 July 2017.
[3] Henry, C.S., DeJongh, M., Best, A.B., Frybarger, P.M., Linsay, B., and R.L. Stevens. High-throughput Generation and Optimization of Genome-scale Metabolic Models. Nature Biotechnology, (2010).
[4] COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
[5] Mackinac: A bridge between ModelSEED and COBRApy to generate and analyze genome-scale metabolic models.
[?] MLA Adadi, Roi et al. “Prediction of Microbial Growth Rate versus Biomass Yield by a Metabolic Network with Kinetic Parameters.” Ed. Nathan D. Price. PLoS Computational Biology 8.7 (2012): e1002575. PMC. Web. 31 July 2017.
[?} Molenaar, Douwe et al. “Shifts in Growth Strategies Reflect Tradeoffs in Cellular Economics.” Molecular Systems Biology 5 (2009): 323. PMC. Web. 31 July 2017.