Difference between revisions of "Team:Arizona State/Description"

Line 39: Line 39:
  
 
<h3> Battle of the AHLs </h3>
 
<h3> Battle of the AHLs </h3>
 +
<p>Using past research and experimental data from many sources, including the experiments performed in the paper written by Spencer and Hasty, 2016, we have chosen to study the issue of “crosstalk” in hopes of solving the issue so that more complex circuits can be built down the road. Crosstalk occurs when cells that receive AHL signals are also able to receive AHLs from different QS systems. When QS pathways operate without communication between unwanted cells, the pathways are orthogonal and potentially viable options for bioengineering new synthetic circuits. Reducing crosstalk will allow us to increase the complexity of the circuits in the cells allowing them to carry out more complex tasks while working independently of each other (Purnick et al, 2009). </p>
 +
<p>On this side quest, multiple sender AHLs are preparing for battle against the three evil receivers: LuxR, LasR and TraR. With the available data on how single senders interact with a receiver, this quest aims to fight the evil receivers with TWO senders at a time and gather the results. This battle royale should give some new results on how the receivers act when attacked from two sides with different concentrations of AHLs. Understanding the enemy will give the upper hand to synthetic biology by adding new combinations of senders to the known registries of synthetic circuits. In the great battle, the winning combinations will express either a higher or lower GFP than a single sender would alone. This data, along with any new orthogonal pathways found in the process, will make the attack on the receivers all worthwhile. This is because adding new data on how to manipulate circuits beyond the ‘all or nothing’ responses of single sender tests will provide a higher level of control regarding gene expression. This level of control is important when a circuit needs to be made to express at a specific level versus just expressing the gene.  </p>
 +
<p>This experiment explores BL21 E. coli bacteria that has been transformed with our sender plasmids, in the modular sender vector (MSV). MSV is used as a vehicle to artificially carry foreign genetic material into another cell, where it can be replicated and/or expressed. The sequence that includes the antibiotic resistance marker and the replication origin is held within the backbone of the plasmid. The image below depicts an example of a sender gene for LuxI, one of the senders we will be testing. </p>
 +
<p>Previous research used just one AHL at a time with the Lux receiver to catalogue the functionality of potential circuits. The Lux F2620 is a composite gene constructed by standard assembly from five BioBrick standard biological parts (Canton et al., 2008). In this research, we will be combining and testing two different HSLs in the form of freshly grown cultured sender cell (filtered) supernatants. Different concentrations of the two senders will be tested with one receiver at a time to catalogue our ten senders for crosstalk, orthogonality, signal disruption and possible circuit enhancing combinations. Results will be measured using Green fluorescent protein (GFP) expression in the receiver bacteria. The GFP expression levels will depend on how well the AHLs bind to regulatory proteins inducing transcription of the GFP. This can change based on the AHL concentration and how much crosstalk there may be between the different senders. The differences in GFP expression levels will be used to evaluate how well the HSLs signals are being received compared to the other combination samples. Results can then be analyzed based on the varying percentages of one supernatant to the other combinations of senders that were used. Signal strength (induction) over time provides information about the strength of the overall induction (GFP/OD). The rate of induction will be analyzed using the hill equation to better understand how the concentration of AHLs affects induction. The addition of these details to the known catalogue of QS pathways will make for easier development of specific synthetic circuits in the future designed to operate either faster or slower depending on the specific need. </p>
 +
<p>Some of the specific questions this research aims to answer are: how do combinations of senders affect gene output? Can we find any combinations of senders that increase the overall GFP expression? Can we find any combinations that do not affect the GFP expression? </p>
  
 +
<p>The specific senders chosen for the induction tests were selected because previous research showed that they have either a very low or very high rate of GFP induction when used in a single sender/ receiver circuit. In other words, the chosen senders tend to either work very well or not very well at all and we need more data on how well these senders express the gene when used in combination with another. By combining two senders at a time, sometimes with senders that have shown to induce a high GFP expression and sometimes with senders that have shown a weak induction, our team wanted to see if it could increase or decrease the GFP expression on demand as needed. The controls used for the experiment were testing single sender inductions on the same plate as the combinations, the use of blank wells (LB AMP 100%), a positive GFP control, and a negative control with negative receiver cells and negative sender supernatant. </p>
  
  
<h3> </h3>
+
 
 +
<h3> Concentration of AHLs </h3>
  
  

Revision as of 15:37, 23 October 2017