Difference between revisions of "Team:Bielefeld-CeBiTec/Part Collection"

(added abstract)
Line 16: Line 16:
 
<div class="contentbox">
 
<div class="contentbox">
 
<div class="content">
 
<div class="content">
 +
<article>
 +
Currently, protein design is limited by the chemical properties of the canonical amino acids. Our part collection expands the possibilities for advanced protein design, utilizing novel amino acids with diverse chemical abilities. We provide six different aminoacyl-tRNA synthetases for the translational incorporation of non-canonical amino acids to the iGEM community. As key component of our toolbox, this collection comprises parts for the selection and screening of aminoacyl-tRNA synthetases. To enable the evolution of new aminoacyl-tRNA synthetases, we provided instructions for building randomized aminoacyl-tRNA synthetase libraries. Using our part collection, every iGEM team can evolve their own aminoacyl-tRNA synthetases to incorporate naturally occurring and even fully synthetic non-canonical amino acids. This foundational advance towards rational protein design and engineering leads to innovative tools and applications for synthetic biology.
 +
</article>
 +
 +
 
<table>
 
<table>
 
<thead>
 
<thead>

Revision as of 20:50, 23 October 2017

Part Collection
Currently, protein design is limited by the chemical properties of the canonical amino acids. Our part collection expands the possibilities for advanced protein design, utilizing novel amino acids with diverse chemical abilities. We provide six different aminoacyl-tRNA synthetases for the translational incorporation of non-canonical amino acids to the iGEM community. As key component of our toolbox, this collection comprises parts for the selection and screening of aminoacyl-tRNA synthetases. To enable the evolution of new aminoacyl-tRNA synthetases, we provided instructions for building randomized aminoacyl-tRNA synthetase libraries. Using our part collection, every iGEM team can evolve their own aminoacyl-tRNA synthetases to incorporate naturally occurring and even fully synthetic non-canonical amino acids. This foundational advance towards rational protein design and engineering leads to innovative tools and applications for synthetic biology.
Name Type Description Designer Length