Line 116: | Line 116: | ||
<p><strong>Safety</strong></p></a> | <p><strong>Safety</strong></p></a> | ||
+ | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
Line 130: | Line 131: | ||
</body> | </body> | ||
+ | |||
+ | |||
</html> | </html> | ||
{{Freiburg/Footer}} | {{Freiburg/Footer}} |
Revision as of 20:24, 29 October 2017
Cell Culture
In cell culture, mammalian cells are grown under controlled conditions outside of their natural environment. This technique poses a powerful in vitro model as transformed cells from a variety of cell types coming from all three germ layers are available. These transformed cell lines have been immortalized and can be easily kept under culture conditions, in contrast to so called primary cells that have freshly been isolated from patients. In vitro, cells can easily be manipulated to study cellular processes, the roles of genes and proteins as well as the cellular responses to environmental cues. A wide range of methods to genetically manipulate cultured cells and assay systems to visualize and evaluate cellular processes have been established and guarantee reliable and reproducible data to be obtained from cell culture experiments.
For our study we chose human embryonic kidney (HEK293T) cells (Fig. 1) and Jurkat cells (Fig. 2), as well as Chinese hamster ovary (CHO) cells (Fig. 3) as a model. HEK293T is a broadly used cell line that is especially easy to keep in culture and can be genetically manipulated by simple transfection methods. We used this cell line to express and characterize the individual parts of the AND gate and to produce viral particles which were used to stably transduce Jurkat cells.
Jurkat cells (Fig. 2) are a cell line of immortalized human T lymphocytes. These cells were used to create a cell line of lymphocytic origin that stably expresses the complete AND gate and CAR.
CHO cells (Fig. 3) are a line of transformed epithelial cells. They were used for some experiments as they possess different expression characteristics compared to HEK293T cells. This allowed us to perform experiments that are not feasible in in HEK293T cells due to high background expression or insufficient transfection efficiency.