Difference between revisions of "Team:OUC-China/Model"

Line 11: Line 11:
 
<style type="text/css">
 
<style type="text/css">
 
body{padding-top: 50px;}
 
body{padding-top: 50px;}
.ouc-navbar{background-color:#008EA1;top:15px;}
+
.ouc-nav{color:white; background-color: #008EA1;display:block; width: 100%; color: white;}
.ouc-nav-a{color: white;}
+
.ouc-nav:visited{text-decoration: none; color: white}
#ouc-logo{padding-top:5px;}
+
.ouc-nav:hover{text-decoration: none; background-color: white; color:#008EA1; }
#ouc-logo:hover{background-color:#008EA1;}
+
.ouc-navbar{position: relative;padding: 0;margin: 0;}
 +
.ouc-navbar:hover .ouc-down{display: inherit;}
 +
.ouc-down{position: absolute; top:50px;display: none;background-color: white;}
 +
.ouc-navdown{color: #008EA1;display: block; width: 100%;height: 40px;}
 +
.ouc-navdown:visited{text-decoration: none;color:#008EA1; }
 +
.ouc-navdown:hover{background-color:#D2D2D2;color: white;text-decoration: none}
 +
.ouc-guide{position: fixed; width: 100%;top: 15px;z-index: 1000}
 
.ouc-page-header{border-bottom-color: #EDEC8C;border-bottom-width: thick;color: #008F75;}
 
.ouc-page-header{border-bottom-color: #EDEC8C;border-bottom-width: thick;color: #008F75;}
 
.top{position: fixed;bottom:0;right: 0;}
 
.top{position: fixed;bottom:0;right: 0;}
Line 34: Line 40:
 
<body>
 
<body>
 
<!--此处是导航-->
 
<!--此处是导航-->
<div class="navbar navbar-fixed-top ouc-navbar" role="navigation">
+
<div class="ouc-guide" style="height: 50px;background-color:#008EA1 ;">
    <ul class="nav navbar-nav">
+
<div class="row">
        <li><a href="https://2017.igem.org/Team:OUC-China" class="navbar-brand" id="ouc-logo"><img src="https://static.igem.org/mediawiki/2017/8/89/T--OUC-China--logo.jpg" width="66" height="40" /></a></li>
+
    <div class="col-md-1"></div>
        <li class="dropdown">
+
<div class="col-md-1" style="padding-top: 5px;"><a href="https://2017.igem.org/Team:OUC-China"><img src="https://static.igem.org/mediawiki/2017/8/89/T--OUC-China--logo.jpg" height="40px"/></a></div>
            <a  data-toggle="dropdown" class="dropdown-toggle ouc-nav-a">Team<span class="caret"></span></a>
+
<div class="col-md-1"></div>
            <ul class="dropdown-menu">
+
<div class="col-md-1 ouc-navbar">
                <li><a href="https://2017.igem.org/Team:OUC-China/Team">Members</a></li>
+
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Team<span class="caret"></span></a>
                <li><a href="#">Collaborations</a></li>
+
    <div class="ouc-down" style=" width: 100%; text-align: center">
                <li><a href="#">Attributions</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Team" style="line-height: 40px; " class="ouc-navdown">Members</a></div>
            </ul>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Collaborations" style="line-height: 40px; " class="ouc-navdown">Collaborations</a></div>
        </li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Attributions" style="line-height: 40px; " class="ouc-navdown">Attributions</a></div>
        <li class="dropdown">
+
    </div>
            <a href="#" data-toggle="dropdown" class="dropdown-toggle ouc-nav-a">Project<spam class="caret"></span></a>
+
</div>
            <ul class="dropdown-menu">
+
<div class="col-md-1 ouc-navbar">
                <li><a href="#">Description</a></li>
+
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Project<span class="caret"></span></a>
                <li><a href="#">Design</a></li>
+
    <div class="ouc-down" style=" width: 100%; text-align: center">
                <li><a href="#">Experiments</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Description" style="line-height: 40px; " class="ouc-navdown">Description</a></div>
                <li><a href="#">Results</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Design" style="line-height: 40px; " class="ouc-navdown">Design</a></div>
                <li><a href="https://2017.igem.org/Team:OUC-China/InterLab">Interlab</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Results" style="line-height: 40px; font-size: 15px;" class="ouc-navdown">Proof of concept</a></div>
                <li><a href="https://2017.igem.org/Team:OUC-China/Notebook" >Notebook</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Demonstrate" style="line-height: 40px; " class="ouc-navdown">Demonstrate</a></div>
            </ul>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/InterLab" style="line-height: 40px; " class="ouc-navdown">InterLab</a></div>
        </li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Improve" style="line-height: 40px; " class="ouc-navdown">Improve</a></div>
        <li><a href="#" class="ouc-nav-a">Model</a></li>
+
    <div><a href="https://2017.igem.org/Team:OUC-China/Notebook" style="line-height: 40px; " class="ouc-navdown">Notebook</a></div>
        <li><a href="#" class="ouc-nav-a">Parts</a></li>
+
    </div>
        <li><a href="#" class="ouc-nav-a">Safety</a></li>
+
</div>
        <li><a href="#" class="ouc-nav-a">Human Practice</a></li>
+
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Model" style="line-height: 50px;text-align: center" class="ouc-nav">Model</a></div>
    </ul>
+
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Parts" style="line-height: 50px;text-align: center" class="ouc-nav">Parts</a></div>
</div>
+
<div class="col-md-1"><a href="https://2017.igem.org/Team:OUC-China/Safety" style="line-height: 50px;text-align: center" class="ouc-nav">Safety</a></div>
 +
<div class="col-md-2 ouc-navbar">
 +
    <a href="##" style="line-height: 50px;text-align: center" class="ouc-nav">Human Practice<span class="caret"></span></a>
 +
    <div class="ouc-down" style=" width: 100%; text-align: center">
 +
    <div><a href="https://2017.igem.org/Team:OUC-China/HumanPractice" style="line-height: 40px; " class="ouc-navdown">Overview</a></div>
 +
    <div><a href="https://2017.igem.org/Team:OUC-China/HP/Silver" style="line-height: 40px; " class="ouc-navdown">Silver</a></div>
 +
    <div><a href="https://2017.igem.org/Team:OUC-China/HP/Gold_Integrated" style="line-height: 40px; " class="ouc-navdown">Gold and integrated</a></div>
 +
    <div><a href="https://2017.igem.org/Team:OUC-China/Engagement" style="line-height: 40px; " class="ouc-navdown">Engagement</a></div>
 +
    </div>
 +
</div>
 +
<div class="col-md-2"></div>
 +
</div>
 +
</div>
 
<!--此处是导航-->
 
<!--此处是导航-->
  

Revision as of 20:09, 30 October 2017

Model

Our modeling is divided in two main parts, the basic part and the advanced part:

Xylose pathway

Cellobiose pathway

Adhesion Platform





Xylose Pathway





Cellobiose Pathway





Adhesion Platform


Overview

The aim to the adhesion platform is binding the E,coli to S.cerevisiaes to form a microbial collaboration platform utilizing streptavidin-biotin interaction. Given that we longed to get a better production rate of ethanol using this platform in our project, we made this model to :

1. simulate the kinetic process of adhesion platform, including the coculture-growth of E.coli and S.cerevisiae, the binding-dissociation process of these two organisms, using agent-based modeling (ABM).

2. prove the binding E.coli to S.cerevisiae can increase the production rate of ethanol using ABM;

3. define the Average Normalized Rate Constant (ANRC) to investigate the best experimental conditions for our lab.

Agent-based modeling

Two agent-based models (ABMs) were developed to investigate the adhesion platform, for ABM is a powerful type of model to simulate a complex system in stochastic way, as well as display the real-time animations of the simulated system.

In ABM, we can create thousands of agents and design them by several simple rules that we encoded in them, resemble to that we design the cell to form a device that could achieve some functions in synthetic biology, and set them in some conditions required. Then, we simulate them to see what would happen. This is an impressive method to explore how a complex group system evolves based on individual activity, or as called “emergence phenomenon“, so we use ABM as our major approach in this model.

We use NetLogo to build our ABMs. The source code could be found in our Github.

Binding-Dissociation Model

This agent-based model (ABM) built in NetLogo shows us vivid results of how different types of cells behave in adhesion platform.

The diagram of simulation is as follows:


Figure 1 The diagram of binding-dissociation model.

Hypotheses

To simplify the reality, several hypotheses had been made as follows:
1. Agents are moving randomly obeying Brownian Motion in liquid environment.
2. Binding and dissociation process are considered independent events for SEi(i≤5).

Derivation

Using parameters shown in Table 1, and simplifying the S.cerevisiae cell as a sphere, and E.coli cell as a cylinder, we calculate the solid angle (Ω) of both of them.

\[\Omega=\iint_S{\sin\theta d\theta d\phi}\]

Therefore, the solid angle of a S.cerevisiae and an SEi could be given.

\[\Omega_S=4\pi\] \[\Omega_{SE_i}\approx0.11\]

The proportion of occupied solid angle could be calculated.

\[\frac{\Omega_{SE_i}}{\Omega_S}=0.96\%\lt1\%\]

Although the primary binding process may affect the secondary binding process, the proportion of occupied solid angle is less than 1%, which means assuming binding and dissociation process as independent events is reasonable. Independent events keep the same probability all the time, so that we could calculate the probabilities of both of them.

Binding Probability(Probb)

Given that binding only occurs when a SEi meets with an E.coli cell, the sample space of the binding probability is considered as “A SEi and an E.coli cell meeting each other”.

\[Probb=P("B"\mid"EM") P("EM")\]

where “B” equals “Binding” and “EM” equals “Effective meeting”. “Effective meeting”, in other word, is the streptavidin and biotin meeting each other as two cells encounter. Therefore, alternative form if Probb is given.

\[Probb=\alpha \frac{N_{bio} A_{bio}}{A_{S.cere}}\cdot\frac{N_{strep} A_{strep}}{A_{E.co}}\]

By bringing parameters in Table 1, Probb is 54.503 % in our model.

Dissociation Probability(Probd)

Not like binding process, which may happens only when two cells encounter, the dissociation process could be taken place at any time, so the Probd is defined as the probability of dissociation in an unit time interval (Δt) following the exponential distribution.

\[Probd=1-{exp} (-k_d \Delta t)\]

By bringing parameters in Table 1, Probd is 0.339 % in our model.

*Supplementary: Derivation of Probd function
The dissociation process could be simplified as follows:

\[SE_i\to SE_{i-1}+E \]

And we could write down the ODE function of it.

\[\frac{-d[SE_i]}{dt}=k_d[SE_i]\]

By integrating it with \(t:0\to\Delta t\), \([SE_i]:[SE_i]_0\to[SE_i]_0+\Delta[SE_i]\), we have

\[\ln\left(\frac{[SE_i]_0-\Delta[SE_i]}{[SE_i]_0}\right)=-k_d\Delta t\]

Alternative form of this equation is as follows.

\[\frac{\Delta[SE_i]}{[SE_i]_0}=1-exp(-k_d\Delta t)\]

From the definition of Probd, we could find that

\[Probd=\frac{\Delta[SE_i]}{[SE_i]_0}\]

And we give the probability of dissociation.

\[Probd=1-exp(-k_d\Delta t)\]

3. Adhesion platform does not affect the strength of streptavidin-biotin interaction.

Parameters and agents in ABM

Parameter name Description Value Unit Sources/Comments
SE Size of E.coli 2×0.5 μm Kubischek HE(Jan 1990)
SS Size(radii) of S.cereivisae 3.75 μm Walker K, Skelton H, Smith K(2002)
ΩS Solid angle of S.cereivisae - Calculated in model
ΩSE Solid angle of SEi 0.11 - Calculated in model
Probb Probability of binding process 54.503% - Calculated in model
Probd Probability of dissociation process 0.339% - Calculated in model
Nbio Number of biotins displayed in S.cereivisae 16000 - Parthasarathy, R., Bajaj, J., & Boder,E. T.(2005)
Nstrep Number of sreptavidin displayed in E.coli 160000 - Park, M., Jose, J., Thömmes, S., Kim, J. I., Kang, M. J., & Pyun, J. C. (2011)
Abio Influential area per biotin 2.04×10-3 μm2 PDB:4WF2
Astrep Influential area per streptavidin 3.91×10-5 μm2 Daniel, D. M., Drake, E. J., Hong, L. K., Gulick, A. M., & Sheldon, P. (2013)
AS.cere Surface area of a S.cerevisiae cell 176.72 μm2 Calculated in model
AE.co Surface area of a E.cili cell 6.29 μm2 Calculated in model
α P("B"|"EM") 1 - *Assumed
Δt Unit time interval in simulation 1 s -
kd Dissociation rate constant 3.4×10-3 s-1 Wu, S. C., Ng, K. S., & Wong, S. L. (2009)
iniGal Initial concentration of galactose mM Experimental data
iniS.cere Initial amount of S.cerevisiae in simulation 100 - Experimental data
iniE.coli Initial amount of E.coli in simulation - Variable: set to different values in the model
Emove Average moving rate of E.coli cells - Variable: set to different values
Smove Average moving rate of S.cerevisiae cells - Variable: set to different values
YE/g E.coli-biomass yield /mM Estimated from experimental data
YS/g S.cerevisiae-biomass yield /mM Estimated from experimental data

Table 1 Parameters used in ABM

*Assumption made due to the high affinity of streptavidin biotin interaction.

Agent name Description Comments
E.coli E.coli cell -
SEi S.cerevisiae cell combined with i E.coli cells i=(1,2,3,4,5)
galactose galactose particle -

Table 2 Agents applied in ABM

Simulations

We focus mainly on two conditions to analysis our platform: the ratio of initial amount of S.cerevisiae cells and E.coli cells (S:E), and average moving rate of cells.

The ratio of initial amount of S.cerevisiae cells and E.coli cells (S:E)

We change this ratio from 1:10 to 10:1 by changing initial amount of E.coli cells while keeping the initial amount of S.cerevisiae cells as a constant.

Here shows some of the simulation results:


Figure 2. Binding ratio of each type of SEi with S:E = 5:1, 1:1, 1:5 separately.


Figure 3. Percentage of all SEi in adhesion platform with S:E from 10:1 to 1:10 (color form yellow to red).

The average moving rate of cells

We change the average moving rate of cells from 1 μm/s to 10 μm/s with 1 μm/s step and do simulations with S:E ratio is 1:1..


Figure 4. Binding ratio of each type of SEi with moving rate = 1, 5, 10.


Figure 5. Percentage of all SEi in adhesion platform with moving rate = 1, 4, 8, 10 μm/s.

Animations

As agent-based model could directly display the real-time behaviors of adhesion platform, animated simulations are given.

Note that the cycle-like agents with many colors are S.cerevisiae cells. The blue ones are SE0, and those colors from pink to deep red are SE1 to SE5. The purple rod-like agents are E.coli cells, which are very tiny compared to S.cerevisiae cells. Galactose particles are not shown.


Animation 1. Animated simulation of S:E = 1 : 5 in 1000 min.


Animation 2. Animated simulation of S:E = 1 : 1 in 1000 min.


Animation 3. Animated simulation of S:E = 5 : 1 in 1000 min.

Production properties of SEi

Average Normalized Rate Constant (ANRC)



Contact Us : oucigem@163.com  |  ©2017 OUC IGEM.All Rights Reserved.  |  Based On Bootstrap