Difference between revisions of "Team:UNOTT/Modelling"

Line 384: Line 384:
 
  <div class="expandable-box">
 
  <div class="expandable-box">
 
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;"> Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP</h4><center></center>
 
       <h4 style="color: #ffffff; font-weight: bold; font-size: 30px;"> Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP</h4><center></center>
       <div id="clear7" style="display: none;">
+
       <div id="clear8" style="display: none;">
 
<p> After concluding the general scheme we would be using, the team evaluated the selection of proteins. The proteins selected for the system use fluorescence, indicating they take in a light at a certain wavelength, and re-emit it at a different wavelength. This has to be considered because it informs the wet-lab in knowing which wavelengths are required to produce a spectra as well as highlighting the importance of considering any side effects from producing the spectra such as light being reabsorbed and re-emitted at a different wavelength / color, which would result in the spectra being similar to each other rather than unique. </p>
 
<p> After concluding the general scheme we would be using, the team evaluated the selection of proteins. The proteins selected for the system use fluorescence, indicating they take in a light at a certain wavelength, and re-emit it at a different wavelength. This has to be considered because it informs the wet-lab in knowing which wavelengths are required to produce a spectra as well as highlighting the importance of considering any side effects from producing the spectra such as light being reabsorbed and re-emitted at a different wavelength / color, which would result in the spectra being similar to each other rather than unique. </p>
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>
 
<p> In order to save time and program a model, the team used Semrock's Online Fluorescence graph maker <sup> 1 </sup> which operated by taking in the expected Absorption wavelengths and emitting the Emission wavelengths expected by sfGFP (green), mRFP (red) and ECFP (blue) proteins. This was done through the Web App on the website. Furthermore, they provided the raw data in a text file format which was useful as it allows the team to read the data into a stand alone program. </p>

Revision as of 13:38, 1 November 2017





MODELLING

Overview







About modeling and why iGEM Nottingham chose to do it

Constitutive Gene Expression For Protein and mRNA Expression over Time

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Max Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP

Conclusion

What iGEM Nottingham 2017 learnt from modelling and took away from it.

Are Our Constructions Random?



Showing that our constructions are random and why they are random