Difference between revisions of "Team:UNOTT/Modelling"

Line 368: Line 368:
 
<p> These graphs show the relationship between protein concentration of a certain type of protein and the intensity that can be expected of it. By integrating real life data into the models, we can have accurate representation of how the bacteria would behave in real life. This suggests that when comparing the modelled data to real life data from for our lab data set. there is a strong fit. However, this is not necessarily true for all cases: we simply only had data for the conditions we were using, which suggests that more data would be required for the models to be truly representative of real world data.</p>
 
<p> These graphs show the relationship between protein concentration of a certain type of protein and the intensity that can be expected of it. By integrating real life data into the models, we can have accurate representation of how the bacteria would behave in real life. This suggests that when comparing the modelled data to real life data from for our lab data set. there is a strong fit. However, this is not necessarily true for all cases: we simply only had data for the conditions we were using, which suggests that more data would be required for the models to be truly representative of real world data.</p>
 
<br> </br>  
 
<br> </br>  
<p> Due to time constraints, rather than implementing the relationship directly from lab data, the data was fitted using a Polynomial Fit of Order 3 using Excel and an equation was calculated from these. These equations were directly plugged into the simulation. However, this is inaccurate as the R squared value was ... , suggesting that it doesn't fully capture the data trend. </p>
+
<p> On evaluation, the fit for the CFP appears quite strange! Unlike GFP and RFP, this the trend line doesn't look similar. Insight from the wet lab suggested there were mistakes made with reading from the fluorescence reader, which can be attributed to this behaviour. One way to fix this is to check the settings for the readers and choose a wavelength which is exclusively going to cause the CFP to fluoresce as the Absorption and Emission Wavelength models suggests that using a wavelength of 375nm might mean interference from the GFP would be kept to a minimum. Furthermore, due to time constraints, rather than implementing the relationship directly from lab data, the data was fitted using a Polynomial Fit of Order 3 using Excel and an equation was calculated from these. These equations were directly plugged into the simulation. However, this is inaccurate as the R squared value was ... , suggesting that it doesn't fully capture the data trend. In order to improve this situation, if there was more data available for different scenarios such as with using different wavelengths and concentration of proteins, the model could be validated against more data and refined. Once done, this could substitute the polynomial fit. Lastly, to improve the data, rather than having to use another model to estimate the protein concentration, the team could read for protein concentration during fluorescence readings. This means there is a separate data set to validate the model from, to check whether our protein calculations were correct. </p>
 
<br></br>
 
<br></br>
      <p> These relationships were implemented into the simulation to give the expected spectra produced by each protein. This highlights another use: by adding or subtracting values from our fit, we can create a threshold for our Keys. This was essential when developing the Raw Data Simulator. <sup> 2 </sup></p>
+
<p> These relationships were implemented into the simulation to give the expected spectra produced by each protein. This highlights another use: by adding or subtracting values from our fit, we can create a threshold for our Keys. This was essential when developing the Raw Data Simulator. <sup> 2 </sup></p>
  
 
<br> </br>
 
<br> </br>

Revision as of 15:39, 1 November 2017





MODELLING

Overview







About modeling and why iGEM Nottingham chose to do it

Constitutive Gene Expression For Protein and mRNA Expression over Time

The general gene expression equation showing the process of protein synthesis

Gene Transcription Regulation by Repressors (CRISPRi) - Concentration over Time

Calculating how much protein is produced over time when a gene is inhibited

Relationship between Max Fluorescence and Protein Concentration

Using our models to estimate the amount of fluorescence expected from a certain concentration of protein synthesized

Absorption and Emission Wavelengths From Given Concentrations of sfGFP, mRFP & ECFP

Working out which wavelengths are required to produce a fluorescence spectra.

Are Our Constructions Random?



Showing that our constructions are random and why they are random

Conclusion

What iGEM Nottingham 2017 learnt from modelling and how modelling impacted the project.