Difference between revisions of "Template:TU Darmstadt/Flowchartb"

Line 473: Line 473:
 
               y="402.22089"
 
               y="402.22089"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">We constructed a low cost</tspan><tspan
+
               sodipodi:role="line">We constructed a smartphone-</tspan><tspan
 
               id="tspan9200"
 
               id="tspan9200"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="407.7496"
 
               y="407.7496"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">digital inline holographic </tspan><tspan
+
               sodipodi:role="line">adaptable low-cost and mainly 3D printed</tspan><tspan
 
               id="tspan9121"
 
               id="tspan9121"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="413.27832"
 
               y="413.27832"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">microscope (DIHM) with a</tspan><tspan
+
               sodipodi:role="line">microscope with a µm resolution by</tspan><tspan
 
               id="tspan9206"
 
               id="tspan9206"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="418.80704"
 
               y="418.80704"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">resolution of up to 10 µm including</tspan><tspan
+
               sodipodi:role="line">implementing the digital inline holographic</tspan><tspan
 
               id="tspan9123"
 
               id="tspan9123"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="424.33575"
 
               y="424.33575"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">a software solution. This makes it possible for us</tspan><tspan
+
               sodipodi:role="line">approach. Thus, allowing the analyzation of our</tspan><tspan
 
               id="tspan9212"
 
               id="tspan9212"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="429.86444"
 
               y="429.86444"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">to see our <tspan style="font-style:italic;">E. coli</tspan> cells during the production process</tspan><tspan
+
               sodipodi:role="line">hydrogel structure during the project. We also present</tspan><tspan
 
               id="tspan9125"
 
               id="tspan9125"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="435.39316"
 
               y="435.39316"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">of chitosan. The reconstruction of our microscope is </tspan><tspan
+
               sodipodi:role="line">a software solution enabling 3D analyzation based on</tspan><tspan
 
               id="tspan9127"
 
               id="tspan9127"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;stroke-width:0.26458332"
 
               y="440.92188"
 
               y="440.92188"
 
               x="-41.766598"
 
               x="-41.766598"
               sodipodi:role="line">executed with the open source Holopy package.</tspan><tspan
+
               sodipodi:role="line">the open source HoloPy package.</tspan><tspan
 
               id="tspan9129"
 
               id="tspan9129"
 
               style="font-size:4.23333311px;line-height:0.5em;fill:#d4043b;fill-opacity:1;stroke-width:0.26458332"
 
               style="font-size:4.23333311px;line-height:0.5em;fill:#d4043b;fill-opacity:1;stroke-width:0.26458332"

Revision as of 16:01, 1 November 2017

image/svg+xml 6. Hydrogel:To use the wound healing supportive properties of chitosan,we manufactured non-toxic, low-cost hydrogels, containingdefined chitosans for usage in wound care.Visit the subpage! 9. CloneCademy:In order to share the knowledge aboutsynthetic biology and the achievementsof our project, we developed a web-basedinteractive learning platform calledCloneCademy. This education tool makesit possible for other iGEM teams to sharetheir ideas with society.Visit the subpage! 7. Solution:By combining the physiological propertiesof chitosan and the novel detectionsystem for wound infections in a hydrogelbandaid, we realized next generation wound care. Furthermore, we successfullyproved all milestones of our project.Visit the subpage! 8. Tech:We constructed a smartphone-adaptable low-cost and mainly 3D printedmicroscope with a µm resolution byimplementing the digital inline holographicapproach. Thus, allowing the analyzation of ourhydrogel structure during the project. We also presenta software solution enabling 3D analyzation based onthe open source HoloPy package.Visit the subpage!