Line 93: | Line 93: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | <div class="contentbox"> | |
+ | <div class="bevel tr"></div> | ||
+ | <div class="content"> | ||
<div class="contentbox"> | <div class="contentbox"> | ||
<div class="bevel tr"></div> | <div class="bevel tr"></div> | ||
Line 124: | Line 126: | ||
</article> | </article> | ||
− | + | </div> | |
+ | </div> | ||
</div> | </div> |
Revision as of 17:41, 1 November 2017
Photoswitching
Short Summary
As proof-of-concept, we incorporated the non-canonical amino acid phenylalanine-4’-azobenzene (AzoF) into one enzyme coded by the gene crtI of the β-carotene pathway (BBa_K2201207) (Schaub et al., 2012). If the photoswitch is in the OFF state, the orange colored lycopene is not synthetized. After irradiation the photoswitch is turned ON, which leads to the synthesis of lycopene and its detection.
Photoswitching with Non-Canonical Amino Acids
- (i)
- Photocaging: A “protection” group facilitates or inhibits the normal function of a given protein, but after cleaving of the chemical moiety the protein of interest is de/activated. This process is irreversible.
- Photoswitching: The used chemical moiety used can be switched between “ON" and "OFF” stages. This process is reversible.
(ii)
For both approaches the incorporation of a chemical moiety into a permissive site of the protein of interest is accomplished through amber suppressor tRNA (Bose et al., 2006).
The advantage of light as the trigger for the cleaving and conformational change lies in its highly controllable, selective and inexpensive application. In contrast to chemical substrates used for induction of a reaction, light does not leave residues which themselves can influence the test environment. Furthermore, many already established techniques can be adapted to apply the specific wavelength and irradiation time for any possible non-canonical amino acid (Brieke et al., 2012).
Phenylalanine-4’-azobenzene (AzoF)
- Name: Phenylalanine-4’-azobenzene
- Short: AzoF
- CAS: 154596-15-3
- MW: 269.299
- Storage: dark and cold
- Source: acccorporation
- Prize: 5mg - 498.88$
- Function: conformation is switchable by irradiation with light of specific wavelengths
Figure 1: Structure of AzoF in cis- and trans-conformation.
Carotenoid Biosynthesis
The universal precursors of the carotenoid biosynthesis pathway are the isomers isopentenyl pyrophosphate (IPP) and dimethylalkyl pyrophosphate (DMPP) (Rodríguez-Villalón et al., 2008). In nature, two independent pathways lead to the precursor biosynthesis: (i) The mevalonic acid (MVA) pathway, found in eukaryotes, archaea and some bacteria with the primary educt acetyl-CoA (Kirby and Keasling, 2009). (ii) The alternative metabolic methylery thriol phosphate (MEP) pathway, found in most bacteria and plant plastids with the primary educts being pyruvate and glycerylaldehyde-3-phosphate (GAP), which condensate (Rohmer, 1999; Lange et al., 2000; Rohdich et al., 2003).
IPP and DMPP are then catalyzed to farnesyl pyrophosphate (FPP) by two sequential prenyltransferase reactions by farnesyl diphosphate synthase encoded by ispA (Yuan et al., 2006). FPP is the common branch point for carotenoid, but also other isoprenoid biosynthesis like dolichols and quinons. Also FPP naturally occurs in the non-carotenogenic E. coli. For production of lycopene and β-carotene just four genes from the bacteria Pantoea ananas need to be heterologously expressed in E. coli (Choi et al., 2013; Yuan et al., 2006): (i) crtE coding for geranylgeranyl diphosphate synthase which catalyzes the condensation of FPP and IPP to form geranylgeranyl diphosphate (GGPP) (Misawa et al., 1990), (ii) crtB coding for the phytoene synthase which catalyzes the condensation of two GGPP to yield phytoene (Iwata-Reuyl et al., 2003), (iii) crtI coding for phytoene desaturase which forms lycopene (Fraser et al., 1992), and (iv) crtY coding for lycopene cyclase which catalyzes the cyclization of lycopene and thus converting it to β-carotene.
Just the two last products of the β-carotene biosynthesis are colored compounds with lycopene being red and β-carotene being orange due to their polyene chromophore (Schaub et al., 2012).
Figure 2: Biosynthesis Pathway of β-Carotene.
Two independent pathways feed the biosynthesis of β-carotene with the precursors IPP and DMAP. Based on Yoon et al., 2009.
References
Bose, M., Groff, D., Xie, J., Brustad, E., and Schultz, P.G. (2006). The Incorporation of a Photoisomerizable Amino Acid into Proteins in E. coli. J. Am. Chem. Soc. 128: 388–389.
Brieke, C., Rohrbach, F., Gottschalk, A., Mayer, G., and Heckel, A. (2012). Light-Controlled Tools. Angew. Chem. Int. Ed. 51: 8446–8476.
Choi, S.-K., Osawa, A., Maoka, T., Hattan, J.-I., Ito, K., Uchiyama, A., Suzuki, M., Shindo, K., and Misawa, N. (2013). 3-β-Glucosyl-3’-β-quinovosyl zeaxanthin, a novel carotenoid glycoside synthesized by Escherichia coli cells expressing the Pantoea ananatis carotenoid biosynthesis gene cluster. Appl. Microbiol. Biotechnol. 97: 8479–8486.
Fraser, P.D., Misawa, N., Linden, H., Yamano, S., Kobayashi, K., and Sandmann, G. (1992). Expression in Escherichia coli, purification, and reactivation of the recombinant Erwinia uredovora phytoene desaturase. J. Biol. Chem. 267: 19891–19895.
Iwata-Reuyl, D., Math, S.K., Desai, S.B., and Poulter, C.D. (2003). Bacterial Phytoene Synthase: Molecular Cloning, Expression, and Characterization of Erwinia herbicola Phytoene Synthase. Biochemistry (Mosc.) 42: 3359–3365.
Kirby, J. and Keasling, J.D. (2009). Biosynthesis of Plant Isoprenoids: Perspectives for Microbial Engineering. Annu. Rev. Plant Biol. 60: 335–355.
Kirsh, V.A., Mayne, S.T., Peters, U., Chatterjee, N., Leitzmann, M.F., Dixon, L.B., Urban, D.A., Crawford, E.D., and Hayes, R.B. (2006). A Prospective Study of Lycopene and Tomato Product Intake and Risk of Prostate Cancer. Cancer Epidemiol. Prev. Biomark. 15: 92–98.
Klán, P., Šolomek, T., Bochet, C.G., Blanc, A., Givens, R., Rubina, M., Popik, V., Kostikov, A., and Wirz, J. (2013). Photoremovable Protecting Groups in Chemistry and Biology: Reaction Mechanisms and Efficacy. Chem. Rev. 113: 119–191.
Lange, B.M., Rujan, T., Martin, W., and Croteau, R. (2000). Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. U. S. A. 97: 13172–13177.
Lee, P. and Schmidt-Dannert, C. (2002). Metabolic engineering towards biotechnological production of carotenoids in microorganisms. Appl. Microbiol. Biotechnol. 60: 1–11.
Mayne, S.T. (1996). Beta-carotene, carotenoids, and disease prevention in humans. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 10: 690–701.
Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K., and Harashima, K. (1990). Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. 172: 6704–6712.
Palozza, P. and Krinsky, N.I. (1992). [38] Antioxidant effects of carotenoids in Vivo and in Vitro: An overview. Methods Enzymol. 213: 403–420.
Rodríguez-Villalón, A., Pérez-Gil, J., and Rodríguez-Concepción, M. (2008). Carotenoid accumulation in bacteria with enhanced supply of isoprenoid precursors by upregulation of exogenous or endogenous pathways. J. Biotechnol. 135: 78–84.
Rohdich, F., Zepeck, F., Adam, P., Hecht, S., Kaiser, J., Laupitz, R., Gräwert, T., Amslinger, S., Eisenreich, W., Bacher, A., and Arigoni, D. (2003). The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: Studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc. Natl. Acad. Sci. U. S. A. 100: 1586–1591.
Rohmer, M. (1999). The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep. 16: 565–574.
Schaub, P., Yu, Q., Gemmecker, S., Poussin-Courmontagne, P., Mailliot, J., McEwen, A.G., Ghisla, S., Al-Babili, S., Cavarelli, J., and Beyer, P. (2012). On the Structure and Function of the Phytoene Desaturase CRTI from Pantoea ananatis, a Membrane-Peripheral and FAD-Dependent Oxidase/Isomerase. PLoS ONE 7: e39550.
Vershinin, A. (1999). Biological functions of carotenoids - diversity and evolution. BioFactors 10: 99–104.
Wang, Q., Parrish, A.R., and Wang, L. (2009). Expanding the Genetic Code for Biological Studies. Chem. Biol. 16: 323–336.
Yoon, S.-H., Lee, S.-H., Das, A., Ryu, H.-K., Jang, H.-J., Kim, J.-Y., Oh, D.-K., Keasling, J.D., and Kim, S.-W. (2009). Combinatorial expression of bacterial whole mevalonate pathway for the production of β-carotene in E. coli. J. Biotechnol. 140: 218–226.
Yuan, L.Z., Rouvière, P.E., LaRossa, R.A., and Suh, W. (2006). Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab. Eng. 8: 79–90.
Zimmerman, G., Chow, L.-Y., and Paik, U.-J. (1958). The Photochemical Isomerization of Azobenzene1. J. Am. Chem. Soc. 80: 3528–3531.