Difference between revisions of "Team:Berlin diagnostX/Design"

Line 16: Line 16:
 
     <div class="row mt-4">
 
     <div class="row mt-4">
 
         <div class="col-4">
 
         <div class="col-4">
             <h5 class="igem_blue text-center pb-1">Transcriptome Analysis of T. solium</h5>
+
             <h5 class="igem_blue text-center pb-1">Transcriptome analysis of T.solium</h5>
 
             <p class="text-center">Behind the Bioinformatics</p>
 
             <p class="text-center">Behind the Bioinformatics</p>
 
             <img class="img-fluid px-5" src="https://static.igem.org/mediawiki/2017/e/e0/T--Berlin_diagnostX--icon1.png">
 
             <img class="img-fluid px-5" src="https://static.igem.org/mediawiki/2017/e/e0/T--Berlin_diagnostX--icon1.png">
Line 42: Line 42:
 
         </div>
 
         </div>
 
         <div class="col-8">
 
         <div class="col-8">
             <h5 class="text-center pb-1"><strong>Transcriptome Analysis of T. solium</strong></h5>
+
             <h5 class="text-center pb-1"><strong>Basics: RNA toehold switch</strong></h5>
             <p class="text-justify">Irgendn Text</p>
+
             <p class="text-justify">Toehold switches are RNA molecules that can regulate the downstream translation (in our case of a reporter protein) depending on the presence or absence of specific trigger RNA. </p>
 +
<p class="text-justify">They consist of:
 +
1. a specific single-stranded toehold sequence
 +
2. a ribosome-binding site (RBS)
 +
3. a coding sequence for the reporter protein.
 +
The reporter protein can only be produced if the toehold domain (recognition site) of the sensor has bound to its specific trigger RNA sequence. In absence of trigger RNA, the toehold switch forms a hairpin structure that prevents the ribosome from binding to the RBS, and thereby the translation (production of the reporter protein) can’t be initiated. </p>
 
             <h5 class="text-center pb-1"><strong>Noch ne Überschrift</strong></h5>
 
             <h5 class="text-center pb-1"><strong>Noch ne Überschrift</strong></h5>
 
             <p class="text-justify">Irgendn Text</p>         
 
             <p class="text-justify">Irgendn Text</p>         

Revision as of 18:27, 1 November 2017

Design

The vision of diagnost-x

Developing a low cost, easy-to-handle diagnostic test for infection with the tapeworm Taenia solium

Transcriptome analysis of T.solium

Behind the Bioinformatics


Basics: RNA toehold switch

Toehold switches are RNA molecules that can regulate the downstream translation (in our case of a reporter protein) depending on the presence or absence of specific trigger RNA.

They consist of: 1. a specific single-stranded toehold sequence 2. a ribosome-binding site (RBS) 3. a coding sequence for the reporter protein. The reporter protein can only be produced if the toehold domain (recognition site) of the sensor has bound to its specific trigger RNA sequence. In absence of trigger RNA, the toehold switch forms a hairpin structure that prevents the ribosome from binding to the RBS, and thereby the translation (production of the reporter protein) can’t be initiated.

Noch ne Überschrift

Irgendn Text

In order to establish our diagnostic test we thus needed:

  • An RNA sensor designed to target the tapeworm
  • A cell free expression system able to produce a color change
  • T. solium specific trigger RNA
  • (for field use: a carrier system to make the cell-free expression system storable)

We thus divided the work over three subteams:

  1. In-silico RNA sensor design (Team 0)
  2. Sensor synthesis (Team 1)
  3. Sensor Screening/Cell free expression (Team 2)

Preliminary Data (Bioinformatics)

Blablabla


Team 0: In-silico RNA sensor design

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu


Team 1: Sensor Synthesis

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu

Zwischenüberschrift

Text dazu


Team 2: Sensor Screening/Cell free expression system

Text dazu

Summary

In order to develop a diagnostic tool for the tapeworm infection Taeniasis, we developed a pipeline that allowed for designing, synthesizing and testing any given sensor within 2 days.
Step 1: In silico design

  • Design of a toehold switch sensor specific to T. solium RNA
  • Generating primers necessary for switch synthesis

Step 2: DNA-Switch Synthesis

  • By using extension PCR or nested PCR, the toehold switches were synthesized
  • Reporter gene (Beta-galactosidase) and T7 promoter were added to the sensor

Step 3: Sensor Screening

  • Transcription of DNA sensor into RNA takes place in CFE system
  • Specific binding of RNA sensor to trigger RNA leads to translation of reporter gene in CFE system
  • By measuring absorption at 560 nm, color change was measured and enzymatic reaction quantified

Splitting the work into three teams enabled us to work continuously – trouble shooting in one team did not stall work in the other teams. Alongside the work on the core piece – a CFE system containing a sensitive and specific sensor – we tried to keep the ultimate goal in mind: a test usable in the field.

We thus investigated fixing the system onto cellulose membranes, making it storable, durable and easily transportable. Collaborations with partners in Berlin, Europe and India enabled us to further adapt our system to challenges of real-life application.

References

[1] Pardee, K. et al. Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell 165, 1255–1266 (2016).
[2] Green, A. A., Silver, P. A., Collins, J. J. & Yin, P. Toehold Switches: De-Novo-Designed Regulators of Gene Expression. Cell 159, 925–939 (2014)
[3] Gomez, S. et al. Genome analysis of Excretory/Secretory proteins in Taenia solium reveals their Abundance of Antigenic Regions (AAR). Sci. Rep. 5, 9683 (2015)