Difference between revisions of "Template:NAU-CHINA/hardware"

 
Line 16: Line 16:
 
         </head>
 
         </head>
 
         <style>
 
         <style>
       
+
 
       
+
 
       
+
 
 
         /****** DEFAULT WIKI SETTINGS  *******/
 
         /****** DEFAULT WIKI SETTINGS  *******/
 
                 /* Clear the default wiki settings */
 
                 /* Clear the default wiki settings */
Line 25: Line 25:
 
                     display: none;
 
                     display: none;
 
                 }
 
                 }
       
+
 
 
                 #sideMenu,
 
                 #sideMenu,
 
                 #top_title,
 
                 #top_title,
Line 31: Line 31:
 
                     display: none;
 
                     display: none;
 
                 }
 
                 }
       
+
 
 
                 #content {
 
                 #content {
 
                     width: 100%;
 
                     width: 100%;
Line 38: Line 38:
 
                     margin-left: 0px;
 
                     margin-left: 0px;
 
                 }
 
                 }
       
+
 
 
                 body {
 
                 body {
 
                     background-color: white;
 
                     background-color: white;
Line 44: Line 44:
 
                     overflow-y: auto;
 
                     overflow-y: auto;
 
                 }
 
                 }
       
+
 
 
                 #bodyContent h1,
 
                 #bodyContent h1,
 
                 #bodyContent h2,
 
                 #bodyContent h2,
Line 52: Line 52:
 
                     margin-bottom: 0px;
 
                     margin-bottom: 0px;
 
                 }
 
                 }
       
+
 
 
                 #globalWrapper {
 
                 #globalWrapper {
 
                     padding: 0 !important
 
                     padding: 0 !important
 
                 }
 
                 }
       
+
 
 
         body{
 
         body{
 
             width: 100%;
 
             width: 100%;
Line 109: Line 109:
 
             bottom:0;
 
             bottom:0;
 
             animation: mymovelf 2s;
 
             animation: mymovelf 2s;
       
+
 
 
         }
 
         }
 
         .banner_text_background span:after{
 
         .banner_text_background span:after{
Line 123: Line 123:
 
             animation: mymoverf 2s;
 
             animation: mymoverf 2s;
 
         }
 
         }
       
+
 
 
         @keyframes mymovelf
 
         @keyframes mymovelf
 
         {
 
         {
Line 140: Line 140:
 
         {
 
         {
 
         0%  {right:300px;opacity: 0;top: 50px;}
 
         0%  {right:300px;opacity: 0;top: 50px;}
       
+
 
 
         100% {right:0px;opacity: 1;top: 0;}
 
         100% {right:0px;opacity: 1;top: 0;}
 
         }
 
         }
Line 146: Line 146:
 
         {
 
         {
 
         0%  {opacity: 0;font-size: 24px}
 
         0%  {opacity: 0;font-size: 24px}
       
+
 
 
         100% {opacity: 1;font-size: 82px;}
 
         100% {opacity: 1;font-size: 82px;}
 
         }
 
         }
Line 195: Line 195:
 
             z-index: 3;
 
             z-index: 3;
 
         }
 
         }
       
+
 
 
         ul li{
 
         ul li{
 
             list-style: none;
 
             list-style: none;
Line 302: Line 302:
 
             margin: 0 !important;
 
             margin: 0 !important;
 
         }
 
         }
       
+
 
 
         /*reset*/
 
         /*reset*/
       
+
 
 
         blockquote, body, button, dd, dl, dt, fieldset, form, h1, h2, h3, h4, h5, h6, hr, input, legend, li, ol, p, pre, td, textarea, th, ul {
 
         blockquote, body, button, dd, dl, dt, fieldset, form, h1, h2, h3, h4, h5, h6, hr, input, legend, li, ol, p, pre, td, textarea, th, ul {
 
             margin: 0;
 
             margin: 0;
Line 311: Line 311:
 
             font-size: normal;
 
             font-size: normal;
 
         }
 
         }
       
+
 
 
         body, button, input, select, textarea {
 
         body, button, input, select, textarea {
 
             font: 12px/1.5 tahoma, arial, 'Hiragino Sans GB', \5b8b\4f53, sans-serif
 
             font: 12px/1.5 tahoma, arial, 'Hiragino Sans GB', \5b8b\4f53, sans-serif
 
         }
 
         }
       
+
 
 
         h1, h2, h3, h4, h5, h6 {
 
         h1, h2, h3, h4, h5, h6 {
 
             font-size: 100%
 
             font-size: 100%
 
         }
 
         }
       
+
 
 
         address, cite, dfn, em, var {
 
         address, cite, dfn, em, var {
 
             font-style: normal
 
             font-style: normal
 
         }
 
         }
       
+
 
 
         code, kbd, pre, samp {
 
         code, kbd, pre, samp {
 
             font-family: courier new, courier, monospace
 
             font-family: courier new, courier, monospace
 
         }
 
         }
       
+
 
 
         small {
 
         small {
 
             font-size: 12px
 
             font-size: 12px
 
         }
 
         }
       
+
 
 
         ol, ul {
 
         ol, ul {
 
             list-style: none
 
             list-style: none
 
         }
 
         }
       
+
 
 
         a {
 
         a {
 
             text-decoration: none
 
             text-decoration: none
 
         }
 
         }
       
+
 
 
         a:hover {
 
         a:hover {
 
             color: #FFFABC;
 
             color: #FFFABC;
 
         }
 
         }
       
+
 
 
         sup {
 
         sup {
 
             vertical-align: text-top
 
             vertical-align: text-top
 
         }
 
         }
       
+
 
 
         sub {
 
         sub {
 
             vertical-align: text-bottom
 
             vertical-align: text-bottom
 
         }
 
         }
       
+
 
 
         legend {
 
         legend {
 
             color: #000
 
             color: #000
 
         }
 
         }
       
+
 
 
         fieldset, img {
 
         fieldset, img {
 
             border: 0
 
             border: 0
 
         }
 
         }
       
+
 
 
         button, input, select, textarea {
 
         button, input, select, textarea {
 
             font-size: 100%
 
             font-size: 100%
 
         }
 
         }
       
+
 
 
         table {
 
         table {
 
             border-collapse: collapse;
 
             border-collapse: collapse;
Line 538: Line 538:
 
                                         </ul>
 
                                         </ul>
 
                                     </a>
 
                                     </a>
       
+
 
 
                                 </li>
 
                                 </li>
 
                                 <li class="first_level">
 
                                 <li class="first_level">
Line 597: Line 597:
 
                                             </a>
 
                                             </a>
 
                                         </li>
 
                                         </li>
       
+
 
 
                                     </ul>
 
                                     </ul>
 
                                 </li>
 
                                 </li>
Line 610: Line 610:
 
                                         <span>MODEL</span>
 
                                         <span>MODEL</span>
 
                                     </a>
 
                                     </a>
       
+
 
 
                                 </li>
 
                                 </li>
 
                                 <li class="first_level">
 
                                 <li class="first_level">
Line 632: Line 632:
 
                                             </a>
 
                                             </a>
 
                                         </li>
 
                                         </li>
       
+
 
 
                                     </ul>
 
                                     </ul>
 
                                 </li>
 
                                 </li>
Line 672: Line 672:
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
       
+
 
 
                         <!-- Content begin -->
 
                         <!-- Content begin -->
 
     <div id="content">
 
     <div id="content">
Line 683: Line 683:
 
                     <div class="header-content-text">
 
                     <div class="header-content-text">
 
                         <p>
 
                         <p>
                                 Our aim is to detect the mycotoxin- Zearalenone, which produced by Fusarium graminearum. When it is infecting wheat. So like many IGEM project, we needed fluorescent microscopy to characterize our cells. When there is Zearalenone, engineered yeast will express fluorescent proteins. By only the current method of detection, sending specimen to the government is not enough. So we want to provide a cheaper, efficient, and user-friendly hardware to detect mycotoxins.
+
                                 Our aim is to detect the mycotoxin- Zearalenone, which produced by Fusarium graminearum. When it is infecting wheat. So like many iGEM project, we needed fluorescent microscopy to characterize our cells. When there is Zearalenone, engineered yeast will express fluorescent proteins. By only the current method of detection, sending specimen to the government is not enough. So we want to provide a cheaper, efficient, and user-friendly hardware to detect mycotoxins.
 
                         </p>
 
                         </p>
 
                         <img src="https://static.igem.org/mediawiki/2017/5/54/NAU-CHINA_hardware-images1.png" alt="">
 
                         <img src="https://static.igem.org/mediawiki/2017/5/54/NAU-CHINA_hardware-images1.png" alt="">
Line 703: Line 703:
 
                         <div class="section-categories-text">
 
                         <div class="section-categories-text">
 
                             <p>
 
                             <p>
                                     It provides a platform for the growth of engineered yeast and a space for reaction. Microfluidic chip deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. A reaction just needs very little samples and reagents, and simultaneously analyzes of hundreds of samples.
+
                                     It provides a platform for the growth of engineered yeast and a space for reaction. Microfluidic chip deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically submillimeter scale. A reaction just needs very little samples and reagents, and simultaneously analyzes hundreds of samples.
 
                             </p>
 
                             </p>
 
                         </div>
 
                         </div>
Line 715: Line 715:
 
                             <div class="section-categories-text">
 
                             <div class="section-categories-text">
 
                                 <p>
 
                                 <p>
                                         It provides a platform for the growth of engineered yeast and a space for reaction. Microfluidic chip deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. A reaction just needs very little samples and reagents, and simultaneously analyzes of hundreds of samples.                                      
+
                                         Peristaltic pump
 +
It is a type of positive displacement pump used for pumping a variety of fluids.
 
                                 </p>
 
                                 </p>
 
                             </div>
 
                             </div>
Line 727: Line 728:
 
                                 <div class="section-categories-text">
 
                                 <div class="section-categories-text">
 
                                     <p>
 
                                     <p>
                                             It provides a platform for the growth of engineered yeast and a space for reaction. Microfluidic chip deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale. A reaction just needs very little samples and reagents, and simultaneously analyzes of hundreds of samples.                                          
+
                                             The microscope should be able to excite the cells using an excitation laser with an excitation wavelength of 485 nm, which matched perfectly with the excitation requirements of our yeast cells.
 
                                     </p>
 
                                     </p>
 
                                 </div>
 
                                 </div>
Line 739: Line 740:
 
                                     <div class="section-categories-text">
 
                                     <div class="section-categories-text">
 
                                         <p>
 
                                         <p>
                                                 OPT101 are sensors  that convert some of the light energy absorbed into electrical energy.                                              
+
                                                 OPT101 are sensors  that convert some of the light energy absorbed into electrical energy.
 
                                         </p>
 
                                         </p>
 
                                     </div>
 
                                     </div>
Line 804: Line 805:
 
                                                         <p>
 
                                                         <p>
 
                                                                 Make it a Do-It-Yourself and inexpensive device in any lab.
 
                                                                 Make it a Do-It-Yourself and inexpensive device in any lab.
                                                                 Each component in our setup is easily interchangeable to customize the excitation、 detection 、degradation capabilities for any project. Our optical setup did not only look impressive, but it was also crucial for characterizing the ability of our fluorescent cells to become a biosensor to detect the toxins and a converter to startover degrading module.
+
                                                                 Each component in our setup is easily interchangeable to customize the excitation、 detection 、degradation capabilities for any project. Our optical setup did not only look impressive, but it was also crucial for characterizing the ability of our fluorescent cells to become a biosensor to detect the toxins and a converter to start over degrading module.
 
                                                         </p>
 
                                                         </p>
 
                                                         <p>
 
                                                         <p>
Line 818: Line 819:
 
     </div>
 
     </div>
 
                         <!-- content end -->
 
                         <!-- content end -->
       
+
 
       
+
 
 
                     <!-- TOP -->
 
                     <!-- TOP -->
       
+
 
 
                     <div class="backTop"></div>
 
                     <div class="backTop"></div>
       
+
 
       
+
 
 
                     <!-- Footer -->
 
                     <!-- Footer -->
 
                     <div class="footer">
 
                     <div class="footer">
Line 832: Line 833:
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
       
+
 
 
         <script src="http://apps.bdimg.com/libs/jquery/2.1.4/jquery.min.js"></script>
 
         <script src="http://apps.bdimg.com/libs/jquery/2.1.4/jquery.min.js"></script>
       
+
 
 
         <script type="text/javascript">
 
         <script type="text/javascript">
       
+
 
       
+
 
 
         var w=document.getElementById("globalWrapper").id = 'globalWrappers';
 
         var w=document.getElementById("globalWrapper").id = 'globalWrappers';
 
         var j=document.getElementById("HQ_page").id = 'HQ_pages';
 
         var j=document.getElementById("HQ_page").id = 'HQ_pages';
 
         var f=document.getElementById("content").id = 'contents';
 
         var f=document.getElementById("content").id = 'contents';
       
+
 
 
             var $firstLevel = $('.nav_total').find('.first_level').has('.second_level');
 
             var $firstLevel = $('.nav_total').find('.first_level').has('.second_level');
 
                         $firstLevel.each(function(index, item) {
 
                         $firstLevel.each(function(index, item) {
Line 849: Line 850:
 
                                 $secondWidth = $second.outerWidth(),
 
                                 $secondWidth = $second.outerWidth(),
 
                                 $diff = $secondWidth - $firstWidth;
 
                                 $diff = $secondWidth - $firstWidth;
       
+
 
 
                             $diff > 14 ? $second.css({
 
                             $diff > 14 ? $second.css({
 
                                 left: -($diff / 2)
 
                                 left: -($diff / 2)
Line 855: Line 856:
 
                             // $second.css({width: $firstWidth+10})
 
                             // $second.css({width: $firstWidth+10})
 
         })
 
         })
       
+
 
       
+
 
 
             var $gototop = $('.backTop');
 
             var $gototop = $('.backTop');
 
                 $gototop.on('click', function() {
 
                 $gototop.on('click', function() {

Latest revision as of 01:09, 2 November 2017

Document

Introduction

Our aim is to detect the mycotoxin- Zearalenone, which produced by Fusarium graminearum. When it is infecting wheat. So like many iGEM project, we needed fluorescent microscopy to characterize our cells. When there is Zearalenone, engineered yeast will express fluorescent proteins. By only the current method of detection, sending specimen to the government is not enough. So we want to provide a cheaper, efficient, and user-friendly hardware to detect mycotoxins.

The instrument is divided into detecting module and degrading module. There are seven functional parts totally, including microfluidic chip, temperature control system, fluorescence detection and excitation system, host computer and slave computer, mechanical parts, functional semipermeable membrane and electric power system

The microfluidic chip

It provides a platform for the growth of engineered yeast and a space for reaction. Microfluidic chip deals with the behaviour, precise control and manipulation of fluids that are geometrically constrained to a small, typically submillimeter scale. A reaction just needs very little samples and reagents, and simultaneously analyzes hundreds of samples.

Peristaltic pump

Peristaltic pump It is a type of positive displacement pump used for pumping a variety of fluids.

Microscope

The microscope should be able to excite the cells using an excitation laser with an excitation wavelength of 485 nm, which matched perfectly with the excitation requirements of our yeast cells.

Photosensors(OPT101)

OPT101 are sensors that convert some of the light energy absorbed into electrical energy.

Temperature control system

Temperature control is a process in which change of temperature of a space is measured or otherwise detected, and the passage of heat energy into or out of the space is adjusted to achieve a desired average temperature..

The host computer and slave computer

In order to make it easier to promote our equipment, have more application audience and better Interactive interface, achieve automatic control of the equipment, easy to use, our slave computer controls valve switch and injection rate by pre-set program and achieves logic temperature control. At the same time, the slave computer will send electric signal to the host computer, process into visual information and reflect to the user.

Design

Detection module

Our detection module includes microfluidics, fluorescence detection and dexcitation system and necessary mechanical parts. The microfluidics used in the project is made of negative gel NOA81 whose chemical composition is triallyl isocyanurate. Negative gel NOA81 has great biocompatibility and chemical inertness, and the production process is relatively mature, so we choose it as the microfluidics material for our project. In this part, microfluidics needs to use the fluorescence generated by live yeast to control LED blue light in degrading part, so the chip part needs temperature control device. We use glass aluminum ceramic for microfluidics substrate aims to provide a constant temperature environment of 30 degrees celsius for engineering bacteria with the help of heating Refrigeration chip. We add the sample to be tested and engineering bacteria into the microfluidic "reaction chamber". When the toxin concentration reaches the threshold, the engineering bacterium express green fluorescent protein. In order to stimulate the generation of green biological fluorescence, we use laser to excite green wavelength and filter laser by dichroic and filter, then we get purely biological fluorescence. Biofluorescence is sensed by the photosensitive element, issuing electrical signals. Microcontroller processes electrical signals and controls the intensity of the LED blue light.

Degradation Module

Our degradation module includes functional semipermeable membrane, LED blue light control part---OPT101. The peristal pump used in the project is designed to drive a set of rollers to rotate. Rollers roll through the soft tube, compressing and releasing repeatedly. Extrusion produces vacuum, inhaling fluid into the soft tube, then pumping process is completed. The device pumps in E.coli and treated samples induced by blue light, the bacteria that pass through the semipermeable membrane can be fixed on the semipermeable membrane and begin to work. After the upstream sensing module playing the role, E.coli secret toxin degrading enzymes induced by blue light. The toxicity of sample is reduced through the functional semipermeable membrane, so the membrane is a kind of “canister”.

There is always room for further improvements

Make it a Do-It-Yourself and inexpensive device in any lab. Each component in our setup is easily interchangeable to customize the excitation、 detection 、degradation capabilities for any project. Our optical setup did not only look impressive, but it was also crucial for characterizing the ability of our fluorescent cells to become a biosensor to detect the toxins and a converter to start over degrading module.

We want to empower people to pay more attention on the problem of the wheat products.