Difference between revisions of "Team:Peking"

Line 219: Line 219:
 
             running a series of instructions in a specific order. More specifically, the sequential logic that
 
             running a series of instructions in a specific order. More specifically, the sequential logic that
 
             consists of a <b>clock</b> , <b>flip flop</b> and <b>control unit</b> in bacteria. The <b>clock</b> is an
 
             consists of a <b>clock</b> , <b>flip flop</b> and <b>control unit</b> in bacteria. The <b>clock</b> is an
             oscillator with a repeated signal cycle that is utilized like a metronome to trigger actions of
+
             oscillator with a repeated signal cycle that serve as a metronome to trigger actions of
 
             sequential logic circuits. <b>Flip-flop</b> is a memory device that can remember states. Paired with a
 
             sequential logic circuits. <b>Flip-flop</b> is a memory device that can remember states. Paired with a
 
             clock signal, it can realize state transition. The <b>control unit</b> is a functional part which can
 
             clock signal, it can realize state transition. The <b>control unit</b> is a functional part which can
Line 250: Line 250:
 
                 <div class="mdl-card__supporting-text"
 
                 <div class="mdl-card__supporting-text"
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
                     An oscillator utilized like a metronome to trigger actions of sequential logic circuits<br>
+
                     An oscillator serves as a metronome to trigger actions of sequential logic circuits<br><br>
  
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
Line 275: Line 275:
 
                     A memory device that can remember states
 
                     A memory device that can remember states
  
                     <br><br>
+
                     <br>
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                       href="https://2017.igem.org/Team:Peking/Project#Flip-flop" target="_blank"
 
                       href="https://2017.igem.org/Team:Peking/Project#Flip-flop" target="_blank"
Line 299: Line 299:
 
                 <div class="mdl-card__supporting-text"
 
                 <div class="mdl-card__supporting-text"
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 10px; padding-top: 30px; padding-bottom:30px">
                     A functional part converting a signal from flip-flop into complex functions
+
                     A functional part converting a repeating signal into complex functions
 
                     <br><br>
 
                     <br><br>
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
Line 322: Line 322:
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
 
                     style="line-height: 2em;text-align: justify; color: #3A3A3A; padding-left: 30px; padding-right: 40px; padding-top: 30px; padding-bottom:30px">
  
                     An encyclopedia of synthetic biology
+
                     A wiki-based encyclopedia exclusive for synthetic biology
  
                     <br><br>
+
                     <br><br><br>
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                     <a class="mdl-button mdl-js-button mdl-button--raised mdl-button--accent mdl-js-ripple-effect"
 
                       href="https://2017.igem.org/Team:Peking/Engagement#p1 " target="_blank"
 
                       href="https://2017.igem.org/Team:Peking/Engagement#p1 " target="_blank"

Revision as of 03:28, 2 November 2017

Peking iGEM 2017

Why sequential logic?


Cells are responsive to a myriad signals under most conditions and adjust their own internal mechanisms order to survive. This adjustment depends not only on processing a combination of current environmental signal inputs , but also on determining the cell’s current state, which is a result of a series of past inputs. In digital circuit theory, this operating mode is known as sequential logic. Nowadays, a wide variety of tasks can be performed by synthetically engineered genetic circuits, mostly constructed using combinational logic. Contrast to sequential logic, it's output is a function of the present input only. It is difficult to perform functions in a specific order, which has limited the widespread implementation of such systems. The ability of sequential logic circuits to store modest amounts of information within living systems and to act upon them would enable new approaches to the study and control of biological processes . A cell can be designed to do work that is more complex if it has more states. In other words, we can reach a new dimensionality in designing synthetic life – time.

What did we do?


This year, the Peking iGEM team is attempting to develop a frame of biological sequential circuits that are programmable. The envisioned circuit is capable of both storing states in DNA and automatically running a series of instructions in a specific order. More specifically, the sequential logic that consists of a clock , flip flop and control unit in bacteria. The clock is an oscillator with a repeated signal cycle that serve as a metronome to trigger actions of sequential logic circuits. Flip-flop is a memory device that can remember states. Paired with a clock signal, it can realize state transition. The control unit is a functional part which can convert a signal from flip-flop into complex functions. With such a design, historical events are recorded and influence current cell behavior. This work tries to point the way toward building large computational sys-tems from modular biological parts—basic sequential computing devices in living cells—and ultimately,programming complex biological functions. Computers have thus become "alive". A unicellular organism itself cannot pack much computational power, but considered as a modular building block, its potential is impressive.

Clock

An oscillator serves as a metronome to trigger actions of sequential logic circuits

Read More

Flip-flop

A memory device that can remember states
Read More

Controller

A functional part converting a repeating signal into complex functions

Read More

SynBioWiki

A wiki-based encyclopedia exclusive for synthetic biology


Read More