Team:Edinburgh UG/TestPage








When $a \ne 0$, there are two solutions to \(ax^2 + bx + c = 0\) and they are $$x = {-b \pm \sqrt{b^2-4ac} \over 2a}.\leftrightarrow$$

Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text TextText Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

TEXT1
TEXT2
\
List of chemical species:
Symbol Description
$O_{T7}$ T7 polymerase gene, controlled by LacO operon
Constant Value Unit Description
$$k_{sMR}$$ $$24.67^{*}$$ $$nM min^{-1}$$ Transcription rate of LacI-mRNA, constitutive promoter
$$\lambda_{MR}$$ $$0.462$$ $$min^{-1}$$ Degradation rate of LacI-mRNA
$$k_{sR}$$ $$15$$ $$min^{-1}$$ Translation rate of LacI protein
$$\lambda_{R}$$ $$0.2$$ $$min^{-1}$$ Degradation rate of LacI protein
$$k_{2R}$$ $$50$$ $$nM^{-1} min^{-1}$$ Dimerization rate of LacI monomer
$$k_{-2R}$$ $$10^{-3}$$ $$min^{-1}$$ Dissociation rate of LacI dimer
$$k_{rT7}$$ $$960$$ $$nM^{-1} min^{-1}$$ Binding constant, LacI dimer and T7 LacO
$$k_{-rT7}$$ $$2.4$$ $$min^{-1}$$ Unbinding constant, LacI dimer and T7 LacO
$$\lambda_{R2}$$ $$0.2$$ $$min^{-1}$$ Degradation rate of LacI dimer
$$k_{dr1}$$ $$3\times10^{-7}$$ $$nM^{-2}min^{-1}$$ Rate constant of forming IPTG-LacI dimer
$$k_{-dr1}$$ $$12$$ $$min^{-1}$$ Rate constant of dissociating IPTG-LacI dimer
$$k_{dr2}$$ $$3\times10^{-7}$$ $$nM^{-2}min^{-1}$$ Rate constant, IPTG displacing LacI dimer from the T7 LacO
$$k_{-dr2}$$ $$4.8\times10^3$$ $$min^{-1}$$ Rate constant, IPTG-LacI binding to empty T7 LacO, releasing two IPTG molecules
$$k_{rCre}$$ $$960$$ $$nM^{-1}min^{-1}$$ Binding constant, LacI dimer and Cre LacO
$$k_{-rCre}$$ $$2.4$$ $$min^{-1}$$ Unbinding constant, LacI dimer and Cre LacO
$$k_{dr3}$$ $$3\times10^{-7}$$ $$nM^{-2}min^{-1}$$ Rate constant, IPTG displacing LacI dimer from the Cre LacO
$$k_{-dr3}$$ $$4.8\times10^3$$ $$min^{-1}$$ Rate constant, IPTG-LacI binding to empty Cre LacO, releasing two IPTG molecules
$$\lambda_{I2R2}$$ $$0.2$$ $$min^{-1}$$ Degradation rate of $IPTG_2-LacI_2$
$$k_{s0MT7}$$ $$0.01$$ $$min^{-1}$$ Leaky transcription rate of T7 mRNA (LacI bound)
$$k_{s1MT7}$$ $$0.5$$ $$min^{-1}$$ Transcription rate of T7 mRNA (empty LacO)
$$\lambda_{MT}$$ $$0.462$$ $$min^{-1}$$ Degradation rate of T7 mRNA
$$k_{sT7}$$ $$30$$ $$min^{-1}$$ Translation rate of T7 protein
$$\lambda_{T7}$$ $$0.2$$ $$min^{-1}$$ Degradation rate of T7 protein
$$k_{s0MCre}$$ $$0.01$$ $$min^{-1}$$ Leaky transcription rate of Cre mRNA (LacI bound)
$$k_{s1MCre}$$ $$0.5$$ $$min^{-1}$$ Transcription rate of Cre mRNA (empty LacO)
$$\lambda_{MCre}$$ $$0.462$$ $$min^{-1}$$ Degradation rate of Cre mRNA
$$k_{sCre}$$ $$30$$ $$min^{-1}$$ Translation rate of Cre protein
$$\lambda_{Cre}$$ $$0.2$$ $$min^{-1}$$ Degradation rate of Cre protein
[[File:ETHZ_LuxParameterFitting.png|center|500 px|thumb|'''Figure 1''' Lux QS Module fitted to experimental data from riboregulated Lux system.]] \[a \mathrel{\mathop{\rightleftarrows}^{\mathrm{over}}_{\mathrm{under}}} b\]